Last Name: _____ First Name: _____ Group: _____

EE311

Exam

Important note: In multiple choices, a wrong answer is counted negatively

Exercise 1 (5 points) Classify the following signals as energy signals, power signals or neither. Compute their energy and power. (a) x(t) = 7u(t)

E =∞	P =24.5 W	Type =Power								
(b) $x(t) = 5 \operatorname{sinc} t$										
E =25 J	P =0	Type =Energy								
(c) $x(t) = 2\cos 10t + 4\sin 20t$										
E =∞	P =10 W	Type =Power								
(d) $x(t) = 6$										
E =∞	P =36 W	Type =Power								
(e) $x(t) = e^t u(t)$										
E =∞	P =∞	Type =Neither								

Exercise 2 (4 points) Consider the following system:

$$x(t) \xrightarrow{\qquad } \underbrace{H(f)}_{z(t)} y(t)$$

Where $x(t) = \cos(2\pi 10^4 t)$, $z(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT_s)$, $f_s = \frac{1}{T_s} = 15 \text{ kHz}$, $H(f) = T_s \Pi\left(\frac{f}{2W}\right)$. 1. If W = 7.5 kHz, the resulting signal is: (b) $y(t) = \cos(2\pi 10^3 t)$ (a) $y(t) = \cos(2\pi 10^4 t)$ (c) $y(t) = \cos(2\pi 10^4 t) + \cos(2\pi 10^3 t)$ (d) $y(t) = \cos(2\pi \times 5 \times 10^3 t)$ 2. If W = 12 kHz, the resulting signal is: (b) $y(t) = \cos(2\pi \times 5 \times 10^4 t) + \cos(2\pi 10^6 t)$ (a) $y(t) = \cos(2\pi 10^4 t)$ $(\bigcirc) \quad y(t) = \cos(2\pi 10^4 t) + \cos(2\pi \times 5 \times 10^3 t) \quad (d) \quad y(t) = \cos(2\pi 10^3 t) + \cos(2\pi 10^5 t)$

Exercise 3 (4 points)

The following AM signal $x(t) = A [1+0.5\cos(2\pi f_m t)] \cos(2\pi f_0 t)$ is filtered by a bandpass filter $H(f) = \frac{1}{1+j\frac{f-f_0}{f_m}}$ for $f \ge 0$. The resulting signal is: (a) $x(t) = A [1+\frac{0.5}{\sqrt{2}}\cos(2\pi f_m t)] \cos(2\pi f_0 t - \frac{\pi}{4})$ (b) $x(t) = \frac{A}{\sqrt{2}} [1+0.5\cos(2\pi f_m t - \frac{\pi}{4})] \cos(2\pi f_0 t)$ (c) $x(t) = A [1+\frac{0.5}{\sqrt{2}}\cos(2\pi f_m t)] \cos(2\pi f_0 t)$

 $(\textcircled{d}) \ x(t) = A \bigg[1 + \frac{0.5}{\sqrt{2}} \cos \bigg(2\pi f_m t - \frac{\pi}{4} \bigg) \bigg] \cos \big(2\pi f_0 t \big)$

(Hint: Remember the bandpass filtering of bandpass signal)

Exercise 4 (4 points)

The signal $x(t) = 10\cos(2\pi 10^4 t + 4\sin(200\pi t))$ is filtered by an ideal bandpass filter with transfer function $H(f) = \Pi\left(\frac{f-10^4}{500}\right) + \Pi\left(\frac{f+10^4}{500}\right)$. The power of the output signal is approximately:

(a) 50 W (b) 21.58 W (c) 100 W (d) 52.67 W

Exercise 5 (2 points)

1. A power meter measures a value of -23 dBm. This value corresponds to:

(a) $5 \mu W$ (b) 5 m W (c) $15 \mu W$ (d) $100 \mu W$

2. An rms voltmeter measures a value of 26 dBV. This value corresponds to:

(a) 50 V (b) 20 V (c) 2 V (d) 100 V

Exercise 6 (2 points)

An AM signal is displayed on an oscilloscope. We measure $20 V_{pp}$ at a peak of modulation and $10 V_{pp}$ at a trough. Compute the value of the carrier amplitude and the value of the modulation index.

 $A = _7.5 V_{or} 15 V_{pp}$ $m = _1/3$

Exercise 7 (1 point)

An AM signal is to be demodulated with an envelop detector. The carrier frequency is 100 kHz. The modulating signal is sinusoidal and has a frequency of 10 kHz. The resistance has a value of 1 k Ω and the capacitance has a value of 100 nF. The observed distortion is called:

(a) Slope overload (b) Amplitude overload (c) Envelop overload (d) Slope deficiency

Bessel Functions

$J_n(x)$										
x	0.5	1	2	3	4	6	8	10	12	
n										
0	0.9385	0.7652	0.2239	- 0.2601	-0.3971	0.1506	0.1717	-0.2459	0.0477	
1	0.2423	0.4401	0.5767	0.3391	-0.0660	-0.2767	0.2346	0.0435	-0.2234	
2	0.0306	0.1149	0.3528	0.4861	0.3641	- 0.2429	-0.1130	0.2546	-0.0849	
3	0.0026	0.0196	0.1289	0.3091	0.4302	0.1148	-0.2911	0.0584	0.1951	
4	0.0002	0.0025	0.0340	0.1320	0.2811	0.3576	-0.1054	-0.2196	0.1825	
5	_	0.0002	0.0070	0.0430	0.1321	0.3621	0.1858	-0.2341	-0.0735	
6		—	0.0012	0.0114	0.0491	0.2458	0.3376	-0.0145	-0.2437	
7			0.0002	0.0025	0.0152	0.1296	0.3206	0.2167	-0.1703	
8			—	0.0005	0.0040	0.0565	0.2235	0.3179	0.0451	
9				0.0001	0.0009	0.0212	0.1263	0.2919	0.2304	
10				—	0.0002	0.0070	0.0608	0.2075	0.3005	
11					_	0.0020	0.0256	0.1231	0.2704	
12						0.0005	0.0096	0.0634	0.1953	
13						0.0001	0.0033	0.0290	0.1201	
14						_	0.0010	0.0120	0.0650	