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Modulation 

In this chapter, we are going to learn basic principles of 

modulation. Modulation can be defined as the process of impressing 

information from a modulating signal onto another signal called the 

carrier. The resulting signal is called the modulated signal (in general, 

it is a bandpass signal). 

  

 

Typical modulation system 

The reverse process is called demodulation. When the modulator 

and the demodulator are located in the same apparatus, the system is 

called a MODEM (MOdulator, DEModulator). 

When we do not use modulation, the system is called a "baseband 

communication" system. At that time, the baseband signal is 

transmitted directly. 

Before we go on in the development of modulation theory, we 

have first to answer the following question: Why modulate? 
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Historically, modulation has been introduced in order to use 

reasonably sized antennas in radio communication. We know that the 

physical size of an antenna is a fraction of the wavelength. 

The wavelength is 
c

f
λ = , where c = 3×108 m/s is the speed of 

light, f is the frequency of the signal. So, if we want to transmit a 

baseband signal of 3 kHz by radio, the required wavelength is 100 km. 

It is evident that it is very hard to build an antenna having many 

kilometers of length. If we can transfer the information to a bandpass 

signal with a carrier of 30 MHz, we obtain a wavelength of 10 meters. 

A quarter wave antenna will be 2.5 meters. This is much more 

reasonable. Modulation is also used to make the information fit the 

communication channel. Sophisticated modulation schemes are 

commonly used nowadays to transmit information. Techniques like 

OFDM, Trellis Coding, CDMA, etc. are commonly used in everyday 

communication systems. 

Distortionless Communication 

If we consider the whole communication system from the 

baseband source signal to the baseband destination signal, all 

communication systems can be considered as baseband. In this case, a 

good communication system must be "distortionless". This means that 

the destination signal must be a scaled (and maybe delayed) replica of 

the source signal. If x(t) is the source signal and y(t) is the destination 

one, we must have:  

( ) ( )y t kx t τ= − . k is a constant, τ is a time delay. 
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 In the frequency domain, we obtain: 

 2( ) ( )j fY f ke X fπ τ−= . This means that the overall communication 

system must behave like a filter (LTI system) with a transfer function: 

2( )
( )

( )
j fY f

H f ke
X f

π τ−= =  

So, distortionless communication implies that the amplitude 

response |H(f)| must be constant and that the phase response Arg[H(f)] 

must be a linear function of the frequency. This means that all 

frequencies must be delayed by the same amount. If the transfer 

between the input and output signal is linear and time invariant but 

without satisfying the above conditions, we say that the 

communication system is subjected to "linear distortion". This 

distortion can come from the amplitude response which is not constant 

or from the phase response which is not linearly related to frequency 

(phase or delay distortion). 

This type of distortion can be cured or minimized by using a 

filter called an "equalizer" at the output of the communication channel. 

When the transfer function between the input and output is nonlinear, 

we are in presence of "nonlinear distortion". 

Harmonic distortion: 

When we apply a pure sinewave at a frequency f0 to a linear 

system, the output will be a sinewave at the same frequency. However, 

if the system is nonlinear, the output will be a periodic waveform at 

the same frequency, but it will not be sinusoidal anymore. So, we 

observe harmonics at the output.  
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Let the input be 0( ) cosx t A tω= , the output will be  

( )0 0
1

( ) cosn n
n

y t c a nω θ
∞

=

= + +∑ , 2n na c= and [ ]Argn ncθ = . 

The total harmonic distortion coefficient measures how far the 

signal y(t) is from a sinewave. It is evaluated as: 

2

2
2
1

100 %
n

n

a
d

a

∞

== ×
∑

 

It is the ratio of the rms value of all the harmonics of the signal 

y(t) over the rms value of the fundamental. 

Classification of modulation systems. 

Depending on the modulating signal, we distinguish two different 

types of modulation systems: 

• Digital modulation systems: they are used to transmit digital 

information through physical channels. 

• Analog modulation systems: the modulating signal in this case is 

a baseband analog signal. 

We can also classify modulation according to the type of carrier used 

(and therefore the modulated wave produced). 

• Continuous wave (CW) modulation: The carrier is a sinewave 

and the modulated signal is a narrow bandpass signal. 

• Pulse modulation: The carrier is a periodic train of pulses. The 

modulated signal will carry information about samples of the 

signal. 

We are going to analyze first analog CW modulation. 
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Analog CW modulation. 

The modulating signal ( )s tɶ is assumed to be bounded. This 

means that there exists a peak value 
max

( )s tɶ such 

that:
max

( ) ( )s t s t≤ɶ ɶ for all t. We can thus define a normalized signal 

max

( )
( )

( )

s t
s t

s t
= ɶ

ɶ
and we have ( ) 1s t ≤ . 

The signal is also assumed to have an average value of zero. This 

means that there is no delta impulse at the origin in its spectrum. It is 

also assumed to be bandlimited to a maximum frequency W. In other 

words, if [ ]( ) ( )S f s t= F then ( ) 0S f =  for f W> . 

In CW modulation, the modulated signal x(t) is a narrow 

bandpass signal. This means that it can be expressed in either 

quadrature form: 

0 0( ) ( )cos ( )sinx t a t t b t tω ω= −  

or in modulus/phase form: 

( )0( ) ( )cos ( )x t r t t tω ϕ= +  

ω0 = 2πf0 being the carrier frequency. Depending on the 

modulation method, the information (signal s(t)) can affect a(t), b(t), 

r(t) or ϕ(t). 

I. Linear modulations 

We are going to study in this part modulation methods where the 

quadrature components a(t) and b(t) are linearly dependent on the 

baseband signal s(t). A linear modulation method must satisfy the 
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superposition principle. If x1(t) is produced by s1(t) and x2(t) is 

produced by s2(t), then a1x1(t)+a2x2(t) is produced by a1s1(t)+a2s2(t). 

Before proceeding in the analysis of the different types of linear 

modulation, we are going to study an "almost linear" one: The 

Amplitude Modulation (AM). 

Amplitude Modulation (AM) 

In AM, the information s(t) is carried by the modulus r(t) of the 

signal x(t). Since we have the constraint that r(t) must remain positive 

all the time, we cannot simply make it proportional to s(t). We have to 

add a constant in order to satisfy the above constraint. 

0( ) ( )ar t A k s t= + ɶ  

A0 is a positive dc signal added to make r(t) ≥ 0, ka is a 

proportionality constant and ( )s tɶ is the unnormalized  signal. The 

phase of the carrier ϕ(t) is constant and we use the value of zero. If we 

introduce the normalized signal s(t), we can re-express r(t) as: 

( )0 0max
( ) ( ) ( ) 1 ( )ar t A k s t s t A ms t= + = +ɶ  

max

0

( )ak s t
m

A
=

ɶ
 

m is called the modulation index.  

Since r(t) must be positive, we see that we must have 0 1m≤ ≤ . 

If it happens that m exceeds 1, we say that we have overmodulation. 

The AM signal is: 

( )0 0( ) 1 ( ) cosx t A ms t tω= +  
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Historically, amplitude modulation is the first modulation system 

put into practice. It was used essentially because of the simplicity of 

the receiver structure. It is easily verified that AM is not linear since it 

does not satisfy the superposition principle. It is as linear as the 

function ( )f x ax b= + . This function is not linear however it is 

incrementally linear, i.e. an increment of the input is linearly related to 

an increment of the output. 

 

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

trough of modulation 

peak of modulation 

A1 A2 

 

Sinewave modulated waveform 

  

 The signal s(t) can be an energy or a power type of signal. In the 

first case, we can compute easily the spectrum of the modulated signal 

as a function of the baseband modulating one. 
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 Starting from x(t), we obtain 

 ( )0 0 0 0 0 0( ) 1 ( ) cos cos ( )cosx t A ms t t A t A ms t tω ω ω= + = +  

giving 

0 0 0 0
0 0 0 0( ) ( ) ( ) ( ) ( )

2 2 2 2

A A A A
X f f f f f mS f f mS f fδ δ= − + + + − + +  

 This relation is shown graphically below. 

 

 

 

 The above sketch shows the transformation from the baseband 

signal s(t) to the bandpass signal x(t). We can also remark that if we 

do not want to have a superposition of shifted spectra (aliasing), we 

must have 0f W> . It is also apparent that the bandwidth B of the 

modulated signal is twice the bandwidth of the baseband signal. 

B = 2W 
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If we consider only the positive half of the spectrum, we remark 

that the Hermitian symmetry of S(f) is translated to f0. So, the positive 

half is composed of two halves: the upper sideband above the carrier 

frequency and the lower sideband below the carrier frequency. 

Power Computation 

In order to analyze power signals, we may assume that s(t) is 

periodic. We can start the analysis with the simplest real periodic 

signal: the sinewave. So, let us assume that ( ) cos ms t tω= where 

ωm < ω0. 

 ( )0 0 0 0 0 0( ) 1 cos cos cos cos cosm mx t A m t t A t A m t tω ω ω ω ω= + = +  

Using trigonometric identities, we obtain; 

 ( ) ( )0 0
0 0 0 0( ) cos cos cos

2 2m m

A A
x t A t m t m tω ω ω ω ω= + − + +        

The signal in this case is composed of 3 sinewaves: the carrier with 

amplitude A0 and the two sidebands with amplitude 0

2

A
m each. The 

spectrum consists of only Dirac impulse functions. A more general 

case is the one of a bandlimited periodic signal. We can express s(t) as: 

( )
1

( ) cos
N

k m k
k

s t a k tω θ
=

= +∑  

The signal has a zero dc value and the number of harmonics N is 

given by
m

W
N

f

 
=  
 

. The notation     stands for the floor (i.e. the 

integer just below) of the number written inside. The modulated signal 

is now given by: 
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( )0 0 0 0
1

( ) cos cos cos
N

k m k
k

x t A t A m a k t tω ω θ ω
=

= + +∑  

( )

( )

0
0 0 0

1

0
0

1

( ) cos cos
2

cos
2

N

k m k
k

N

k m k
k

A
x t A t m a k t

A
m a k t

ω ω ω θ

ω ω θ

=

=

= + − +  

+ + +  

∑

∑
 

The above formula is general enough to allow us to compute the 

power of the modulated signal. If we assume that the different 

sinewaves are independent, the total power will be given by the sum 

of the power of the different components. 

2 2
2 20 0

1

2
2 8

N

x k
k

A A
P m a

=

= + × ∑  

In the above relation, we can recognize the carrier power 
2
0

2c

A
P =  and 

the sideband power 
2

2 20

18

N

sb k
k

A
P m a

=

= ∑ . So, the total power of the signal 

is: 2x c sbP P P= + . The sideband power can also be expressed as a 

function of the power of the normalized baseband signal 
2

1 2

N
k

s
k

a
P

=

=∑ , 

i.e. 
2

20

4sb s

A
P m P= . So, in terms of the carrier power and the sideband 

power, we obtain: 

2 2 2
2 20 0 0

2 2 2x c s s

A A A
P P m P m P= + = +  
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Given that the signal s(t) is normalized with a maximum value of 1, its 

power is less than 1 (
22

max

1 1
( ) ( ) 1

m m
s T T

m m

P s t dt s t dt
T T

= ≤ =∫ ∫ ). The 

modulation index m is also less or equal to 1. This means that the 

power transmitted by the two sidebands is smaller than the power used 

to transmit a carrier that conveys no information. More than 50% of 

the total power is used to transmit the carrier. We can evaluate the 

efficiency of the system using the following efficiency coefficient: 

2

2

2

2 1
sb s

c sb s

P m P

P P m P
η = =

+ +
 

η cannot exceed the value of 1/2.   

Example: if ( ) cos ms t tω= , 
1

2sP = , then 
2

22
m

m
η =

+
. If we use m = 1, 

the efficiency becomes 
1

3
η = . In general, AM systems use a 

modulation index smaller than 1. The typical value is 30%. AM is 

used to transmit audio signals that have an average power Ps << 1. In 

this case, the efficiency drops to a very small value. 

Broadcast AM radio use carrier frequencies in the medium waves 

(530 kHz to 1.71 MHz) or in short waves (3 to 30 MHz). We can 

encounter stations transmitting in long waves (148.5 kHz to 

283.5 kHz). The bandwidth B allocated to every channel is 10 kHz. 

This means that each sideband occupies a bandwidth W of 5 kHz. 

AM production: 

The following block diagram reproduces the defining equation of AM. 
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Another structure can be derived by manipulating the defining 

equation.  

( )0 0 0 0 0 0( ) 1 ( ) cos cos ( )cosx t A ms t t A t A ms t tω ω ω= + = +  

 

These block diagrams are essentially theoretical. In practice, radically 

different methods are used. A common technique is to use a saturating 

class C amplifier. The theory behind this type of amplifier will be 

covered in a future course. Another method for AM production is to 

use a memoriless nonlinear amplifier. 

Consider a system with the following input output transfer: 

2
0 1 2z a a w a w= + +  

Let 1 2w s s= + , then 2 2
0 1 1 1 2 2 1 2 2 2 1 22z a a s a s a s a s a s s= + + + + +  

If 1 0( ) coss t A tω= and 2( ) ( )s t s t= ɶ , then 

( )s tɶ  

dc 0cosA tω  

( )s tɶ  

0cosA tω  
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2 2 2
0 1 0 1 2 0 2 2 0( ) cos ( ) cos ( ) 2 ( )cosz t a a A t a s t a A t a s t a As t tω ω ω= + + + + +ɶ ɶ ɶ

Now, 2 1 1
cos cos2

2 2
θ θ= + , so z(t) is the sum of four different 

components: 

Dc component: 
2

2
0 2

a A
a +  

Baseband component: 2
1 2( ) ( )a s t a s t+ɶ ɶ  

Component around ω0: 1 0 2 0cos 2 ( )cosa A t a As t tω ω+ ɶ  

Component at 2ω0: 
2

2
0cos2

2

a A
tω  

If we use a bandpass filter tuned at f0, we can select the component 

around ω0. This component is:  

( )

1 0 2 0

2
1 0

1

0 0

( ) cos 2 ( )cos

2
1 ( ) cos

1 ( ) cos

x t a A t a As t t

a
a A s t t

a

A ms t t

ω ω

ω

ω

= +

 
= + 

 

= +

ɶ

ɶ  

In the above expression, 0 1A a A= and 2 max

1

2 ( )a s t
m

a
= . In order to 

specify the filter, we have to compute the spectrum of the signal z(t). 

( )

[ ]

[ ]

2
2

0

1 2

1
0 0 2 0 0

2
2

0 0

( )
2

( ) ( ) ( )

( ) ( ) ( ) ( )
2

( 2 ) ( 2 )
4

a A
Z f a f

a S f a S f S f

a A
f f f f a A S f f S f f

a A
f f f f

δ

δ δ

δ δ

 
= + 
 

 + + ∗ 

 + − + + + − + + 

+ − + +

ɶ ɶ ɶ

ɶ ɶ
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Positive frequency spectrum of Z(f) 

The convolution term is the Fourier transform of the square 2
2 ( )a s tɶ . If 

we look at the above spectrum, we remark that the AM signal is 

present around f0. It has a bandwidth B = 2W. We notice also that we 

must have f0 > 3W if we want to avoid overlap of spectra. If the 

nonlinear system contains a higher degree, then this condition will 

change. 

There exist many other methods for producing AM signals. They are 

better analyzed in an electronic circuit course. 

AM demodulation: 

There exist several techniques for AM modulation. They fall into two 

different classes: Homodyne (Synchronous, Coherent) demodulation 

and Non Coherent demodulation. 

Coherent demodulation: 

In this technique, we multiply the received AM signal by a carrier 

generated at the receiver. The local carrier must have the same 

frequency and same phase as the one of the AM signal. Let the 

2
2

0 2

a A
a +  

1 ( )a S fɶ  2 ( ) ( )a S f S f ∗ 
ɶ ɶ  2 0( )a AS f f−ɶ  

1
0( )

2

a A
f fδ −  

2
2

0( 2 )
4

a A
f fδ −  

W 2W f0 − W f0 + W f0  
2f0
  

f  

Z(f) 
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received signal be: [ ]0 0( ) 1 ( ) cosx t A ms t tω= +  and the locally generated 

carrier: ( )0 0( ) cosy t B tω ω ϕ= + ∆ +   . ∆ω is a frequency error and ϕ0 is a 

phase error. The result of the product is: 

[ ] ( )

[ ] ( ) [ ] ( )
0 0 0 0

0 0
0 0 0

( ) 1 ( ) cos cos

1 ( ) cos ( ) 1 ( ) cos 2 ( )
2 2

z t A B ms t t t

A B A B
ms t t ms t t t

ω ω ω ϕ

ω ϕ ω ω ϕ

= + + ∆ +  

= + ∆ + + + + ∆ +
 

It is composed of two components. If we use a lowpass filter with a 

bandwidth W, we will recover the first term. If we want to demodulate 

the signal, the frequency error ∆ω must be zero and the phase error ϕ0 

must be as small as possible (far from the value of π/2). The recovered 

signal will be a signal proportional to s(t) plus a dc component. A 

capacitor in series is enough to eliminate the dc component. The 

locally generated carrier on the other hand must be exactly 

synchronized to the received carrier. In most implementations, we can 

use the received carrier if the baseband signal is itself bandpass. This 

is the case of most audio1 and speech2 signals. 

 

 

The above figure shows a typical synchronous demodulator. 

Non coherent demodulator: 

                                                 
1 Audio signals are usually bandpass between 50 Hz and 15 kHz. 
2 Speech signals are bandlimited between 300 and 3400 Hz. 

Narrow 
bandpass filter 
at f0 

Lowpass 
filter 
cutoff W 
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The envelop detector is commonly use in AM receivers and is in fact 

the first demodulator in the history of radio communication. 

C R

 

 

The envelop detector is composed of a diode, a resistor and a 

capacitor. It is essentially a peak detector. This means that the time 

constant of the circuit (RC) must be much larger than the period of the 

carrier (1/f0). On the other hand, the circuit should not distort the 

information signal s(t). This implies that the time constant must be 

smaller than the period of the highest frequency present in the 

signal (W). 

0

1 1

W f
> >>RC  

You will have the occasion to experiment this circuit in the lab. If the 

above condition is satisfied, the signal obtained at the output will be 

proportional to the envelop of the AM signal r(t). Here again a dc 

blocking capacitor is needed to eliminate the dc value present in the 

demodulated signal. 

Double sideband suppressed carrier modulation (DSB-SC): 

In AM, we spend more than half of the total power transmitting a 

carrier that conveys no information. The following method transmits 

just the sidebands without transmitting the carrier. The DSB-SC signal 

is then: 
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0 0( ) ( )cosx t A s t tω=  

We see immediately than this method is a linear modulation scheme. 

Furthermore, from the defining equation, the DSB-SC modulated 

signal is a bandpass signal written in quadrature form. 0( ) ( )a t A s t= and 

( ) 0b t = . In the frequency domain, the spectrum of the DSB-SC signal 

is obtained by a straightforward application of the modulation theorem. 

[ ]0
0 0( ) ( ) ( )

2

A
X f S f f S f f= − + +  

We see that all the power is in the transmitted sidebands. There is no 

transmitted carrier. The transmitted power is: 

2
0

1
2

2x sb sP P A P= =  

Most transmitters are limited by the peak power they can transmit. 

The peak power is given by the square of the maximum of the 

envelop 2

max
( )peakP r t= . For DSB-SC, the maximum of the envelop is A0 

while for AM this maximum is A0(1 + m). So, for AM, 

( )22
0 1peakP A m= + and for DSB-SC, 2

0peakP A= . The ratio of sideband 

power over the peak power for the two modulations is given by: 

( )
2

2

DSB-SC
4

AM
4 1

s

sb

speak

P

P
m PP

m



= 

 +

 

So, for a given peak power, a DSB-SC transmitter produces more than 

four times the sideband power of an AM transmitter. 
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Except for a missing impulse, the spectrum of DSB-SC and the one of 

AM look alike, however, in the time domain, the is a fundamental 

difference. The DSB-SC envelop and phase are given by: 

0

0 ( ) 0
( ) ( ) ( )

( ) 0

s t
r t A s t t

s t
ϕ

π
>= =  <

 

Every time the signal s(t) changes sign, the modulated signal 

undergoes a phase reversal. 
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We see that we cannot demodulate a DSB-SC signal with a simple 

envelop detector. We need a more sophisticated demodulator.  

The most commonly used demodulator for DSB is the homodyne one. 

However, since there is no carrier transmitted along with the signal, 

the local carrier generation is more complex. 

Let 0 0( ) ( )cosx t A s t tω= . The signal s(t) is assumed to be a power 

signal with zero average. If we square the signal x(t), we obtain:  

( )
2 2

2 2 2 2 0
0 0 0

( )
( ) ( )cos 1 cos2

2

A s t
x t A s t t tω ω= = + . The signal s2(t) is 

completely positive. This means that it has an average value that is 

Phase reversals 
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different from zero. We can express it as:2 2
1( ) ( ) ( )s t s t s t=< > + . The 

signal s1(t) has a zero average. In the frequency domain, we obtain: 

[ ]

[ ]

2 2 2
0 0

1

2 2
0

0 0

2
0

1 0 1 0

( )
( ) ( ) ( )

2 2
( )

( 2 ) ( 2 )
4

( 2 ) ( 2 )
4

A s t A
Z f f S f

A s t
f f f f

A
S f f S f f

δ

δ δ

< >= +

< >+ − + +

+ − + +

 

We observe a spectrum around 2f0 that is practically the one of an AM 

signal with a carrier area of 
2 2
0 ( )

4

A s t< >
 . So, we can use a narrow 

bandpass filter tuned at 2f0 to extract a carrier. The filter will be 

followed by a frequency divider by 2 (a simple D flip-flop). 

 

Squaring loop demodulator 

In the above system, there remains a small problem. When we divide a 

frequency by two, we have an ambiguity of π in the phase. This is due 

to the fact that 
( )0

0

2 2

2

t k
t k

ω π
ω π

+
= + . This means that we can have 

a signal reversal at the demodulator. If the destination of the 

demodulator is the human ear, this reversal will not be noticed by the 

auditor. However, if the system is used to transmit data, and if we 

assign "1" to a positive value and "0" to a negative value, then the data 

  (  )² 
Narrow 
Bandpass Filter 
at 2f0 

÷2 LPF 
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will be negated. One way to prevent this is to send a prefix word 

known to the receiver. If it is received correctly, we keep the output of 

the squaring loop. Otherwise, we invert the output carrier from the 

squaring loop.  

One way to avoid problems in carrier recovery is to send a subcarrier 

at a frequency related to the one we want to recover. 

Single Sideband Modulation (SSB): 

When we are transmitting real signals in DSB-SC, the two sidebands 

are related and if we know one, we can deduce the other. So, this 

modulation method transmits only one of the two sidebands, either the 

upper sideband (USB-SSB) or the lower sideband (LSB-SSB). 

Basically, an SSB modulator can be implemented using a DSB-SC 

one followed by a sideband filter. 

 

SSB modulator 

It is quite simple to represent the different operations in the frequency 

domain. The following sketch shows a USB-SSB signal in the 

frequency domain.  

 
Sideband 
filter 

0 0cosA tω  

s(t) 
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USB-SSB Spectrum 

We can observe from the above sketch that the bandwidth of the SSB 

signal is the same as the one of the baseband signal. So, for the same 

information, the SSB modulated signal uses half the bandwidth of the 

DSB modulated signal. This is why SSB is used in crowded spectrum 

environment such as amateur radio. It has been used also in Frequency 

Division Multiplexing (FDM) systems to transmit different voiceband 

signals3. If we observe the following figure, we can observe that the 

different shifted spectra do not overlap. They can be transmitted using 

a single wire. To avoid any problem in carrier recovery, a subcarrier is 

usually transmitted in a separate channel. 

 

 

                                                 
3 A voiceband signal is a signal that conveys human speech. Its spectrum is essentially different from zero in a 
band between 300 and 3400 Hz. 

S(f) 

f −W W 

X(f) 

f0 −f0 f f0+W −f0−W 
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12 Channel FDM system 

To see how SSB is demodulated, we have to express the SSB signal in 

the time domain. In order to do so, it is simpler to obtain first the 

corresponding analytic signal ( )X f+ and then use the fact that 

[ ]( ) Re ( )x t x t+= . When we observe the USB-SSB spectrum, we notice 

that the analytic signal ( )X f+ is just the analytic signal ( )S f+ shifted 

and scaled in the frequency domain. So, 0 0( ) ( )X f A S f f+ += − . In the 

time domain, it gives [ ]0 0( ) ( )expx t A s t j tω+ += . Replacing ( )s t+ by its 

expression ˆ( ) ( )s t js t+ , we obtain: 

( )( )
[ ]

0 0 0

0 0 0

ˆ( ) Re ( ) ( ) cos sin

ˆ( )cos ( )sin

x t A s t js t t j t

A s t t s t t

ω ω

ω ω

= + +  

= −
 

300Hz 3400kHz

4kHz

300Hz 3400kHz

4kHz

300Hz 3400kHz

4kHz

Band Limiting Filters

DSBSC

8.6 → 15.4kHz

12.6 → 19.4kHz

52.6 → 59.4kHz

f1 = 12kHz

f1 = 16kHz

f12 = 56kHz

Increase in 4kHz steps

Σ

FDM OUT
12 – 60kHz

12.3 → 15.4kHz

16.3 → 19.4kHz

56.3 → 59.4kHz

CH1
m1(t)

CH2
m2(t)

CH12
m12(t)

SSB Filter
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The above expression is the one of a USB-SSB modulated signal. It is 

a simple matter to show that the expression of the LSB-SSB 

modulated signal is: 

[ ]0 0 0ˆ( ) ( )cos ( )sinx t A s t t s t tω ω= +  

The above two expressions suggest that SSB modulators can be 

implemented using the following block diagram: 

 

The minus sign is for USB-SSB while the plus is for LSB-SSB. This 

method of SSB production is called the Phasing Method. 

SSB Demodulation: 

We are going to consider only the coherent demodulation method. A 

general SSB signal is: [ ]0 0 0ˆ( ) ( )cos ( )sinx t A s t t s t tω ω= ∓ . We 

multiply this signal by a carrier ( )0 0( ) cosy t B tω ω ϕ= + ∆ +   . Let us 

consider first the case of zero frequency offset (∆ω = 0). 

The result of the product contains terms at low frequency and terms 

around 2f0. The low frequency component is: 

 [ ]0
0 0ˆ( )cos ( )sin

2

A B
s t s tϕ ϕ∓  

Hilbert 
transform 

2

π
 

0 0cosA tω  
s(t) 

∓  
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So, the output of the coherent demodulator will contain a linear 

combination of ( )s t andˆ( )s t . If the end destination is the human ear, 

this signal will sound exactly as s(t) alone. This is due to the fact that 

the human ear is insensitive to phase shifts in the signal. In other cases, 

the phase error cannot be tolerated. 

The analysis of the frequency error is easier to study in the frequency 

domain. Using the modulation theorem, the result of the SSB signal 

multiplied by a carrier is: 

( )0 0 0

1 1
( )cos ( ) ( )

2 2
x t t X f f f X f f fω ω+ ∆ = − − ∆ + + + ∆  F  

Starting from a USB-SSB signal with the spectrum shown below: 

 

We obtain the following spectrum after elimination of the components 

around 2f0: 

 

S(f) 

∆f −∆f f W + ∆f −W − ∆f 

X(f) 

f0 −f0 f f0+W −f0−W 
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We remark that all the frequencies of the message are translated by a 

constant shift. This constant shift does not make the speech 

unintelligible. However, when ∆f is positive, it makes everybody 

sound like "Donald Duck", hence the name; Donald Duck distortion. 

On the other hand, music will be completely distorted since the 

harmonic relations between notes will disappear.  

Advantages and disadvantages of SSB: 

We see that SSB is a linear modulation system that saves on 

bandwidth. The transmission bandwidth is equal to the signal one. 

However, in order to achieve this result we need very complex 

hardware. 

In the filtering method, we have to transmit completely one sideband 

and eliminate completely the other. This means that the transition 

region of the filter is zero. The only way to achieve reasonable filters 

is to use this method for signals that have no energy around zero 

frequency. 

 

If we want to apply the phasing method, we will encounter the same 

problem. It is impossible to build a filter that phase shifts all 

frequencies from zero to W. This means that the phase response of the 

X(f) 

f0 f f0+W f0−W 

Filter 
Amplitude 
transfer 
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filter has also a zero transition band. We can approximate the Hilbert 

transformer if the signal s(t) has the same character as above. It must 

not have any energy around zero. So, SSB is useful if we want to 

transmit speech. Audio signals can be transmitted at the expense of a 

quite complicated hardware. Data cannot be transmitted in the shape 

of a sequence of pulses. This signal possesses power at zero frequency. 

If we want to transmit signals that have spectra that are different from 

zero around dc, one solution is to use Vestigial Sideband. 

Vestigial Sideband (VSB): 

In VSB modulation, we use filter that transmit most of one sideband 

and a very small amount of the other (a vestige).  

In order to determine the filter characteristics, we must analyze a 

complete modulation and demodulation system. The demodulation 

method is always coherent. We multiply the received signal by a 

carrier 0cosωB t  and we lowpass filter the result to eliminate terms 

around 02ω . 

 

In the above block diagram, we must determine the signals at different 

points. 

At A, we have the baseband signal xA(t) = s(t) with spectrum 

XA(f) = S(f). 

VSB Filter Lowpass 
Filter 

0 0cosωA t  0cosωB t  

A B C D E 
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At B, we obtain the DSB-SC signal xB(t) = A0s(t)cosω0t with spectrum 

0 0
B 0 0( ) ( ) ( )

2 2
= − + +A A

X f S f f s f f . 

At C, we have the VSB signal obtained by filtering the DSB-SC signal. 

We are going to characterize it in the frequency domain only: 

[ ]0
C 0 0( ) ( ) ( ) ( ) ( )

2
= − + +A

X f H f S f f H f S f f  

At D, we use the modulation theorem of Fourier transforms and we 

obtain: 

0
D 0 0 0

0 0 0

( ) [ ( ) ( 2 ) ( ) ( )
4

( ) ( ) ( ) ( 2 )]

= − − + −

+ + + + +

A B
X f H f f S f f H f f S f

H f f S f H f f S f f
 

The lowpass filter eliminates all the terms around ±2f0. So, the signal 

at E will be: [ ]0
E 0 0( ) ( ) ( ) ( ) ( )

4
= − + +A B

X f H f f S f H f f S f  

If we want to have a distortionless transmission, this signal must be 

proportional to s(t). This means that: 

0 0( ) ( ) constanteH f f H f f+ + − =  

After some manipulations, we obtain that the transfer function of the 

filter must satisfy: 

[ ]0 0 0( ) ( ) 2Re ( )H f x H f x H f∗+ + − =  for f around f0. 

If ( ) ( ) ( )H f R f jX f= + , then 

0 0 0( ) ( ) 2 ( )R f x R f x R f+ + − =  

0 0( ) ( )X f x X f x+ = −  



 28 

Re[H( f )]

f
 

 

Im[H( f )]

f

 

The above graph shows the different symmetries that the real and 

imaginary part of the transfer function must satisfy. The real part must 

show an odd symmetry with respect to the point (f0, Re[H(f0)]) while 

the imaginary part must have the vertical line passing by f0 as a 

symmetry axis. 

The VSB signal has been characterized in the frequency domain. We 

have seen that it can be demodulated using coherent demodulation. 

We can also have the expression of the VSB signal in the time domain. 

f0 

f0 
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Being a general bandpass signal, it can be expressed in quadrature 

form and it is completely described by its complex envelop. The VSB 

signal appears at point C in our block diagram. Its complex envelop is 

given by the filtering of the complex envelop of the DSB-SC signal at 

B by the lowpass equivalent filter. 

The complex envelop of the signal at B is 0( ) ( )xBm t A s t= with a 

spectrum 0( ) ( )xBM f A S f= . The lowpass equivalent filter ( )lpH f is 

the filter ( )H f translated down. Using the symmetries derived above, 

we can express the equivalent lowpass filter transfer function as: 

[ ]0 0( ) ( ) ( ) ( ) ( ) 1 ( )lp lpH f R f A f jX f R f jQ f= + + = +  

In the above expression, A(f) is an odd function (R(f) translated down 

to f = 0 and shifted down by R(f0)) while Xlp(f) is an even function. 

This implies that Q(f) satisfies ( ) ( )Q f Q f∗= − . The complex envelop 

of the VSB signal is then [ ]0 0( ) ( ) ( ) 1 ( )xM f A R f S f jQ f= +  or in the 

time domain: [ ]1
0 0 0 0( ) ( ) ( ) ( ) ( ) ( )xm t A R f s t jA R f Q f S f= + -F . The 

function Q(f)S(f) satisfies the condition of Hermitian symmetry. This 

implies that its inverse Fourier transform is real. Let 

[ ]1( ) ( ) ( )q t Q f S f−= F  then the complex envelop of the VSB signal is: 

[ ]0 0( ) ( ) ( ) ( )xm t A R f s t jq t= + and the VSB signal can be written as: 

[ ]0 0 0 0( ) ( ) ( )cos ( )sinx t A R f s t t q t tω ω= − . 

The signal q(t) is the output of the filter with transfer function Q(f). 

0 0

( )( )
( )

( ) ( )
lpX fA f

Q f
jR f R f

= +  
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Two extreme cases are interesting: 

If we want to keep the upper sideband and eliminate completely the 

lower one, we must have 0 0

0

2 ( )
( )

0 0

R f f f
H f

f f

>
=  < <

 

This implies that ( ) sgn( )Q f j f= − and ˆ( ) ( )q t s t= . The VSB signal in 

this case is a USB-SSB signal. 

The other extreme case is when we want to keep both sidebands. At 

that time, Q(f) = 0 and the signal is just a DSB-SC one.  

In our analysis, we have assumed that we favor the upper sideband. 

We can obtain the same results for the lower sideband. The modulated 

signal bandwidth is intermediate: W < B < 2W. 

Envelop demodulation of linear modulation + carrier: 

If we add a large amplitude carrier to the inphase component of a 

bandpass signal (DSB, SSB, VSB) we obtain: 

0 0 0 0 0( ) cos ( )cos ( )sinx t B t A s t t A q t tω ω ω= + ±  

The envelop of the signal is: 

( )
( )

2 2
2 2 2 0

0 0 0 2

0

( )
( ) ( ) ( ) ( ) 1

( )

A q t
r t B A s t A q t B A s t

B A s t
= + + = + +

+
 

If 0B A>> , the expression inside the absolute value will always be 

positive and ( ) ( )
2 2
0

0 0
0

( )
( ) ( ) ( )

2 ( )

A q t
r t B A s t B A s t

B A s t
≈ + + ≈ +

+
.This 

technique is used in the transmission of analog television where the 

TV signal is transmitted in VSB+Carrier. 


