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The Fourier Transform. 

Consider an energy signal x(t). Its energy is 
2

( )E x t dt
+∞

−∞
= ∫  

 

Such signal is neither finite time nor periodic. This means that we 

cannot define a "spectrum" for it using Fourier series. In order to try to 

define a spectrum, let us consider the following periodic signal x1(t):   

1( ) ( )x t x t= for t inside an interval of width T0. The signal repeats itself 

outside of this interval. We can define a Fourier series for this signal. 

Furthermore, it is evident that: 

0
1( ) lim ( )

T
x t x t

→∞
=  
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As the period T0 goes to infinity, the spacing between the spectral 

lines decreases. This spacing is 0 0 0
0

2
( 1)n n

T

πω ω ω ω∆ = + − = = . Since 

T0 
t 

x(t) 

x1(t) 
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this value becomes small, the successive values of the frequencies nω0 

can be replaced by the continuous variable ω. So, we can rewrite the 

above expression as: 

0
1

1
( ) ( )

2
j t j t

T
n

x t x t e dt eω ω ω
π

+∞
−

=−∞

 = ∆
  ∑ ∫  

So, when we go to the limit T0 → ∞, the summation will become an 

integral and the spacing ∆ω will become a differential dω. So, we 

obtain: 

1
( ) ( )

2
j t j tx t x t e dt e dω ω ω

π
+∞ +∞ −

−∞ −∞
 =   ∫ ∫  

The expression between brackets is called the Fourier Transform of 

the signal x(t). It is a function of the variable ω, so we can write: 

( ) ( ) j tX x t e dtωω
+∞ −

−∞
= ∫  

1
( ) ( )

2
j tx t X e dωω ω

π
+∞

−∞
= ∫  

The first expression is called the Forward Fourier Transform or the 

Analysis Formula. The second one expresses the signal as linear 

combination of phasors. It is called the Inverse Fourier Transform or 

the Synthesis Formula. The phasors now have frequencies that belong 

to a continuum of values. This is why the synthesis formula is now 

given by an integral and not by a summation. The integrals are 

computed over infinite intervals. This implies that we have to take into 

account convergence conditions. Without going into deep 

mathematical derivation, we can affirm that one sufficient condition 
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for the existence of the Fourier transform is the fact that the signal is 

an energy signal. 

In our course, we will find it easier to use the variable f rather than the 

variable ω. Since, ω = 2πf, we obtain the following pair: 

2( ) ( ) j ftX f x t e dtπ+∞ −

−∞
= ∫  

2( ) ( ) j ftx t X f e dfπ+∞

−∞
= ∫  

The above relations are more interesting than the first ones. They 

differ by only the sign of the exponent inside the integral. 

Symmetry relations: 

The Fourier transform X(f) = F[x(t)] of the signal x(t) is in general a 

complex function of the real variable f. We can express it as: 

( )( ) ( ) j fX f X f e ϕ= , where the two functions |X(f)| and ϕ(f) have no 

particular symmetry if x(t) is complex. However, if x(t) is real, then 

the Fourier transform will have the same type of symmetry as the one 

we have seen in the study of Fourier series (Hermitian Symmetry). 

So: *( ) ( )X f X f= − . This means that:  

( ) ( )X f X f= −  (Even function) 

( ) ( )f fϕ ϕ= − −     (Odd function) 

Example: The rectangular pulse. 

Consider the signal x(t) = Π(t). 

11 2( )
10 2

t
t

t

 <Π = 
>
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We have: 
1

22
1
2

1
( ) sin sincj ftX f e dt f f

f
π π

π
−

−
= = =∫  
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Causal exponential pulse: 

0
( )

0 0

btAe t
x t

t

− >
= 

<
 

2

0
( )

2
bt j ft A

X f A e e dt
b j f

π

π
+∞ − −= =

+∫  

When the function is causal, the Fourier transform can be seen as the 

evaluation of the Laplace transform on the imaginary (jω) axis.  

Properties of the Fourier transform: 

1. Linearity: F[ax1(t)+bx2(t)] = aF[x1(t)] + bF[x2(t)] 



 5 

2. Duality: If x(t) and X(f) constitute a known transform pair, then 

F[X(t)] = x(−f). For example: F[Π(t)] = sincf. Then 

F[sinct] = Π(f). 

3. Time delay:     F[x(t − τ)] = X(f)e−j2πfτ 

4. Scale change: [ ] 1
( )

f
x at X

a a
 =  
 

F . So, compressing a signal 

expands its spectrum and vice versa. 

5. Frequency translation: 0
0 0 0( ) ( ) 2j tx t e X f f fω ω π  = − = F  

6. Modulation theorem:  

[ ]0 0 0

1 1
( )cos ( ) ( )

2 2
x t t X f f X f fω = − + +F  

Example: The RF pulse: Consider 0( ) cos
t

x t A tω
τ
 = Π  
 

. Using the 

above relations, we obtain: 

 0 0( ) sinc( ) sinc( )
2 2
A A

X f f f f f
τ ττ τ= − + +  
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7. Differentiation: ( ) 2 ( )
d

x t j fX f
dt

π  =  
F  

8. Convolution: 

The convolution of two functions is defined as:  

( ) ( ) * ( ) ( ) ( )z t x t y t x y t dλ λ λ
+∞

−∞
= = −∫ . We obtain: 

[ ]( ) * ( ) ( ) ( )x t y t X f Y f=F  

Example: Consider the triangular function Λ(t). 

1 1 1
( )

0 elsewhere

t t
t

− − < <
Λ = 


 

It is easy to show that Λ(t) = Π(t)*Π(t) 

So [ ] 2( ) sinct fΛ =F  

9. Multiplication: 

[ ]( ) ( ) ( ) * ( ) ( ) ( )F x t y t X f Y f X Y f dλ λ λ
+∞

−∞
= = −∫  

10. The Rayleigh Energy theorem: 

2 2
( ) ( )x t dt X f df

+∞ +∞

−∞ −∞
=∫ ∫  

The Dirac Impulse Function 

The Dirac impulse function or unit impulse function or simply the 

delta function δ(t) is not a function in the strict mathematical sense. It 

is defined in advanced texts and courses using the theory of 

distributions. In our course, we will suffice with the following much 

simpler definition.  

(0) 0
( ) ( )

0 otherwise

b

a

x a b
x t t dtδ

< <= 


∫  
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where x(t) is an ordinary function that is continuous at t = 0. 

If x(t) = 1, the above expression implies: 

( ) ( ) 1t dt t dt
ε

ε
δ δ

+∞

−∞ −
= =∫ ∫  for ∀ε > 0 

We can interpret the above result by saying that the impulse function 

has a unit area concentrated at the point t = 0. Furthermore, we can 

deduce from the above that δ(t) = 0 for t ≠ 0. This also means that the 

delta function is an even function. 

The defining integral can also be used to compute the following 

integral: 

1 0
( )

0 0

t t
u du

t
δ

−∞

>=  <
∫  

The above is nothing but the definition of the unit step function or the 

Heaviside function. So, we obtain the following relationship between 

the two functions: 

( ) ( )
t

u t dδ λ λ
−∞

= ∫  

and 
( )

( )
du t

t
dt

δ =  

Properties of the delta function: 

1. Replication: 

( ) * ( ) ( ) ( ) ( )x t t x t d x tδ τ δ λ τ λ λ τ
+∞

−∞
− = − − = −∫  

2. Sifting: 

( ) ( ) ( )x t t dt xδ τ τ
+∞

−∞
− =∫  
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3. We can use the fact that the delta function is even in the above 

integral to show that: ( ) ( ) ( )x t d x tλ δ λ λ
+∞

−∞
− =∫  

The above relation is a convolution. 

4. Since the expressions containing the impulse function must be 

integrated, the following properties can be easily deduced: 

0 0 0( ) ( ) ( ) ( )x t t t x t t tδ δ− = −  

and 
1

( ) ( ) 0at t a
a

δ δ= ≠  

Fourier Transform of the impulse: 

2( ) 1j ftt e dtπδ
+∞ −

−∞
=∫  

Using the duality property, we deduce that: 

[ ] 21 ( )j fte dt fπ δ
+∞ −

−∞
= =∫F  even though the constant (dc) is a power 

and not an energy signal. In fact, using the frequency translation 

property, we can compute the Fourier transform of the phasor: 

0
0( )j te f fω δ  = − F  

This allows us to compute the Fourier transform of periodic signals. 

If x(t) is periodic with fundamental period T0, we can develop it in 

Fourier series: 02( ) j nf t
n

n

x t c e π
+∞

=−∞

= ∑ . Using the above, we obtain: 

[ ] 02
0( ) ( )j nf t

n n
n n

x t c e c f nfπ δ
+∞ +∞

=−∞ =−∞

 = = − 
 
∑ ∑F F  
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Example: 

Consider the following impulse train: 

0( ) ( )
n

x t t nTδ
+∞

=−∞

= −∑ . This function is a repetition of the delta function 

every T0 seconds. In the interval 0 0,
2 2

T T −  
, we have x(t) = δ(t) and it 

is periodic. Its Fourier series coefficients are: 

0

0

0

2

0 02

1 1
( )

T
jn t

Tnc t e dt
T T

ωδ −

−
= =∫  

This implies that the Fourier transform of the impulse train is: 

0 0 0
0

1
( ) ( ) ( )

n n

X f f nf f f nf
T

δ δ
+∞ +∞

=−∞ =−∞

= − = −∑ ∑  

From these relations, we can now relate Fourier transforms and 

Fourier series. In order to do so, let us consider the signal s(t) built by 

a repetition of the signal x(t). 

0( ) ( )
k

s t x t kT
+∞

=−∞

= −∑  where the signal x(t) has a finite duration T0. In 

other words, x(t) = 0 for t ∉ [−T0/2, T0/2]. Let X(f) be its Fourier 

transform. Using the replication property of the delta function, we can 

write: 

0( ) ( ) ( )
k

s t x t t kTδ
+∞

=−∞

= ∗ −∑  

This means that  

0 0 0( ) ( ) ( ) ( ) ( )
k k

S f X f t kT f X f f kfδ δ
+∞ +∞

=−∞ =−∞

 = − = − 
 
∑ ∑F  
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Using now the sampling property, we can re-express the above as: 

0 0 0( ) ( ) ( )
k

S f f X kf f kfδ
+∞

=−∞

= −∑  

Example: Fourier transform of a periodic train of rectangular pulses. 

Here, 0( )
k

t kT
s t A

τ

+∞

=−∞

− = Π  
 

∑ where τ < T0. In our case, the function 

x(t) is: ( )
t

x t A
τ
 = Π  
 

 with a Fourier transform ( )( ) sincX f A fτ τ= . 

So:               ( )0 0 0( ) sinc ( )
n

S f Af nf f nfτ τ δ
+∞

=−∞

= −∑  

So, we have found an alternate way to compute the coefficients of the 

Fourier series of a periodic waveform. In the above example, the 

coefficients cn of the development are: 

( ) ( )0 0sinc sincnc Af nf Ad ndτ τ= =  

where d is the duty cycle 0
0

d f
T

ττ= = . 

Fourier transform of the unit step function and of the signum 

function: 

The signum function sgn(t) is a function that is related to the unit step 

function. It is defined as: 

1 0

sgn( ) 0 0

1 0

t

t t

t

>
= =
− <
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It is evident that u(t) = ½sgn(t) + ½. The signum function has zero net 

area. It can be seen also that sgn(t) is the limit of the following 

function: 

0

( ) 0 0

0

bt

bt

e t

z t t

e t

− >
= =
− <

 

b > 0. We have [ ]
( )22

4
( )

2

j f
z t

b f

π
π

−=
+

F . So,  

[ ]
0

1
sgn( ) lim ( )

b
t Z f

j fπ→
= =F . And from the relation between the 

signum and the unit step function, we get: 

[ ] 1 1
( ) ( )

2 2
u t f

j f
δ

π
= +F . 

By duality, we also obtain: [ ]1 1
sgn( )f

j tπ
− −=F  

The unit step function transform allows us to compute the Fourier 

transform of the integral of a signal. 

( ) ( ) ( ) ( ) ( )
t

x d x u t d x t u tλ λ λ λ λ
+∞

−∞ −∞
= − = ∗∫ ∫ . 

So, 
( ) 1

( ) (0) ( )
2 2

t X f
x d X f

j f
λ λ δ

π−∞
  = +  ∫F  

Signals can be classified according to their spectral occupancy. A 

lowpass (or baseband) signal is a signal with high components at low 

frequencies and small components at high frequencies. On the other 

hand, if the spectrum is significantly different from zero only in a 

band of frequencies all different from zero, the signal is call bandpass. 
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The width of this band is called the bandwidth. If the ratio of the 

bandwidth to the value of the center of the band is small, the signal is 

said to be a narrow bandpass signal.  

 

Bandlimited Signals and the Sampling Theorem 

A signal x(t) with Fourier transform X(f) is said to be bandlimited if 

X(f) = 0 for |f| > W. The frequency W is the bandwidth of the signal. 

Bandlimited signals have the property to be uniquely represented by a 

sequence of their values obtained by uniformly sampling the signal. 

So, to a signal x(t), we can associate a sequence x1(n) = x(nTs). Ts is 

called the sampling period. Its inverse fs is the sampling frequency. 

The Sampling Theorem: 

Given a bandlimited signal x(t) with spectrum X(f ) = 0 for |f | > W. 

The signal can be recovered from its samples x(nTs) taken at a rate 

fs = 1/Ts with fs ≥ 2W. 

( ) ( )sinc s
s

n s

t nT
x t x nT

T

+∞

=−∞

 −=  
 

∑  

Proof: 

We have seen that( ) ( ) ( ) ( )s s sx t t nT x nT t nTδ δ− = − . So, if we multiply 

the signal by the impulse train ( )s
n

t nTδ
+∞

=−∞

−∑ , we obtain the sequence 

of values x1(n) = x(nTs). Let us call the obtained signal xs(t). 

( ) ( ) ( ) ( ) ( )s s s s
n n

x t x t t nT x nT t nTδ δ
+∞ +∞

=−∞ =−∞

= × − = −∑ ∑ . The Fourier 

transform of this signal is obtained by the following convolution: 
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( ) ( ) ( ) ( ) ( )s s s s
n n

X f X f t nT X f f f nfδ δ
+∞ +∞

=−∞ =−∞

   = ∗ − = ∗ −  
   
∑ ∑F . 

Using the replication property of the delta function, we obtain 

immediately: ( ) ( )s s s
n

X f f X f nf
+∞

=−∞

= −∑ . We see that the spectrum of 

the signal xs(t) is a repetition of the spectrum of the signal x(t). 

 

 

 

 

 

 

 

 

 

 

 

 

The above figures show the relationship between spectra. It is clear 

that if fs/2 > W, The spectrum of xs(t) and the one of x(t) will coincide 

X(f) 

f W −W 

Xs(f) 

f fs −fs 

fs/2 −fs/2 

−W W 
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for the range of frequencies between −fs/2 and fs/2 (within the scale 

factor fs). This means that we can recover x(t) by computing the 

inverse Fourier transform of the spectrum Xs(f) multiplied by a 

"rectangular" filter with a transfer function 
s

f

f

 
Π 
 

. So, we have:  

1 1
( ) ( )s

s s

f
x t X f

f f
−   

= Π  
  

F  

The result is finally (show it):  

( ) ( )sinc s
s

n s

t nT
x t x nT

T

+∞

=−∞

 −=  
 

∑  

(q.e.d) 

In the above proof, we had to have fs > 2W. If this does not occur, we 

have the phenomenon of aliasing. Aliasing is a distortion that cannot 

be cured (in general). It is due to the superposition of the different 

shifted spectra. We can observe aliasing when we watch western 

movies. The wagon wheels seem to rotate in reverse. This is due to the 

sampling rate (number of images/second) which is too small. 

So, sampling is the process of generating a sequence (discrete time 

signal) from a continuous time one. The obtained sequence can be 

analyzed in the frequency domain. Let us consider x1(n) = x(nTs). Its 

Fourier transform is defined to be:  

1 1( ) ( ) jn

n

X x n e ωω
+∞

−

=−∞

= ∑  

We can remark that this spectrum is periodic (in the frequency 

domain), with a period equal to 2π. In the definition of the spectrum of 
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a sequence, we can also observe that the frequencies are now 

measured in radians and not in radians per second as for the 

continuous time signal. This is due to the fact that, in a sequence, the 

"time" variable n is an integer indicating just the position of the 

sample and not the time position measured in seconds. You should 

consult the lab manual in order to have the correspondence between 

the spectrum of the sequence and the one of the original signal.  

If the sequence exists for a finite time, i.e. for N samples, then the sum 

is finite. 

1

1 1
0

( ) ( )
N

jn

n

X x n e ωω
−

−

=

=∑  

We can also compute the spectrum of the sequence over a finite 

number of discrete frequencies 
2

k

k

N

πω = , 0, , 1k N= −⋯ . 

21 1

1 1 1 1
0 0

( ) ( ) ( ) ( )k

N N j nkjn N
k

n n

X k X x n e x n e
π

ωω
− − −−

= =

= = =∑ ∑  

The above relation defines the Discrete Fourier Transform (DFT). 

This transform can be computed very efficiently using an algorithm 

called the Fast Fourier Transform (FFT). 

Linear Time Invariant Systems 

Signals are processed by systems. By the word system, we understand 

a mapping from a signal set (input signals) to another signal set 

(output signals). 
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The above figure shows graphically the relationship that exists 

between the input signal and the output one. In the mapping, we 

understand that the whole signal x(t) is transformed into the whole 

signal y(t). You can encounter the notation: y(t) = H[x(t)]. This 

notation can be misleading. It can also mean that the value of the 

signal y at the time t is functionally related to only the value of the 

signal x at t. When we want to indicate the functional relationship 

between values, we will use the following notation: 

[ ]1 2( ) , ( ), ,y t H t x t tλ λ= ∈    

This means that the value of the output y at the time t depends on all 

the values of the input signal at times λ between t1 and t2 and also on 

the state of the system at t. 

Memoriless system:  

If [ ]0 0( ) ( )y t H x t= , i.e. the output at time t0 depends only on the input 

at the same time t0, the system is said to be memoriless. 

Causal and anticausal system: 

If [ ]( ) ( ),y t H x tλ λ= ≤ , i.e. if the output depends only on the past and 

on the present (but not on the future), the system is said to be causal. 

If [ ]( ) ( ),y t H x tλ λ= > , i.e. the system output depends only on the 

future, the system is called anticausal. 

 

System 
x(t) y(t) 
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Stable system: 

If a bounded input (( ) ,x t M t≤ ∀ ) produces a bounded output, we say 

that the system is BIBO stable. 

Linear system: 

A system is linear if it satisfies the condition of superposition: 

If y1(t) is the output corresponding to x1(t) and y2(t) is the output 

corresponding to x2(t), then a1y1(t)+a2y2(t) corresponds to 

a1x1(t)+a2x2(t). 

Time Invariant system: 

A system is time invariant if it is not affected by a shift of the time 

origin. In other words, its properties remain the same as time goes by. 

One consequence is that if x(t) produces y(t), then x(t−τ) will produce 

y(t−τ). 

Many systems of interest are linear and time invariant (LTI). Among 

such systems, we find most of the filters used to select signals in 

communication systems. 

Linear Time Invariant systems: 

LTI systems are systems that can be completely described by a single 

function: the Impulse Response. 

If the input of an LTI system is a Dirac impulse, the corresponding 

output is a function h(t). We have seen that an signal x(t) can be seen a 

linear combination of shifted delta functions.  

( ) ( ) ( )x t d x tλ δ λ λ
+∞

−∞
− =∫  
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So, since the system is time invariant, then the output corresponding 

to δ(t−λ) is h(t−λ). The system is also linear, so the output 

corresponding to x(λ)δ(t−λ) is x(λ)h(t−λ). Finally, the output 

corresponding to x(t) is the sum of such values: 

( ) ( ) ( )y t x h t dλ λ λ
+∞

−∞
= −∫  

The above relation is a convolution. It is easy to show that the 

convolution is a commutative operation. This means that we can write 

also:  

( ) ( ) ( )y t h x t dλ λ λ
+∞

−∞
= −∫  

The function h(t) is the impulse response. It describes completely the 

LTI system and allows us the compute the output for any given input. 

We can test the stability of the system by testing its impulse response. 

A necessary and sufficient condition for a system to be BIBO stable is  

( )h t dt
+∞

−∞
< ∞∫  

The above condition also implies that the Fourier transform of a BIBO 

stable system exists. It is called the transfer function H(f) = F[h(t)]. If 

the input and output signals possess Fourier transforms, we can write: 

( ) ( ) ( )Y f H f X f=  

Causality also imposes restrictions on h(t). If the system is causal, the 

output from the convolution integral should not depend on values of 

the input at times λ coming after the time t. This implies that 

h(t−λ) = 0 for λ > t. So, we see that in order to have causality, we 
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must have h(t) = 0 for t < 0. So, when a system is causal, the input 

output relation becomes:  

0
( ) ( ) ( ) ( ) ( )

t
y t x h t d h x t dλ λ λ λ λ λ

+∞

−∞
= − = −∫ ∫  

Response of an LTI system to a phasor and to a sinewave: 

Let the input of the LTI system be the phasor 0( )j tAe ω θ+ . The output 

will be: 

0 0 0( ( ) ) ( )( ) ( ) ( )j t j t jy t h Ae d Ae h e dω λ θ ω θ ω λλ λ λ λ
+∞ +∞− + + −

−∞ −∞
= =∫ ∫  

Replacing 0 02 fω π= , we recognize the Fourier transform of the 

impulse response, the transfer function H(f0). So 

0( )
0( ) ( ) j ty t H f Ae ω θ+=  

If we introduce the modulus |H(f0)| and argument ϕ(f0) of the transfer 

function: 

0 0( ) ( )
0( ) ( ) j f j ty t H f e Aeϕ ω θ+=  

From the above result, we can conclude two important facts. 

1st) the response of a phasor of frequency f0, is also a phasor. The 

output phasor is proportional to the input one. The constant of 

proportionality is the transfer function. Since an LTI system is a linear 

operator, we can say that the phasors are the "eigenfunctions" of LTI 

systems while the transfer function is the "eigenvalue". 

2nd) the output phasor is equal to the input phasor scaled by the 

modulus of the transfer function and phase shifted by its argument. 

Now, if the input is a sinewave x(t) = Acos(ω0t + θ), we can write: 

0 0( ) ( )( )
2 2

j t j tA A
x t e eω θ ω θ+ − += + , the output becomes: 
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0 0( ) ( )
0 0( ) ( ) ( )

2 2
j t j tA A

y t H f e H f eω θ ω θ+ − += + − giving 

0 0 0 0( ) ( ) ( ) ( )
0 0( ) ( ) ( )

2 2
j f j t j f j tA A

y t H f e e H f e eϕ ω θ ϕ ω θ+ − += + − . If the 

impulse response is real, then |H(f0)| = |H(−f0)| and ϕ(f0) = −ϕ(−f0). 

This implies: 

0 0 0 0( ( )) ( ( ))
0

1 1
( ) ( )

2 2
j t f j t fy t A H f e eω θ ϕ ω θ ϕ+ + − + + = +  

 

( )0 0 0( ) ( ) cos ( )y t A H f t fω θ ϕ= + +  

The output is a sinewave at the same frequency, scaled by the 

modulus of the transfer function and phase shifted by the argument of 

the transfer function at that frequency. 

Example: Consider the following RC circuit: 

 

The transfer function is equal to: (this is a simple voltage divider) 

3

1
1 12

( )
1 1 2 1

2

j fC
H f

fj fRCR j
j fC f

π
π

π

= = =
++ +

 

where 3

1

2
f

RCπ
= is the 3 dB cut-off frequency. Assume we input a 

sinewave at the frequency 3f , ( )3( ) cos 2x t A f tπ= . 
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3

1 2
( )

21 1
H f = =

+
 and 1

3( ) tan 1
4

f
πϕ −= − = − . So: 

3( ) cos 2
42

A
y t f t

ππ = − 
 

  

When the LTI system is used to modify the spectrum of a signal, it is 

called a filter. We can classify filters according to their amplitude 

response. Let H(f) be the transfer function.  

If |H(f)| ≅ 0 for |f| > W, the filter is called Lowpass. 

If |H(f)| ≅ 0 for |f| < W, the filter is called Highpass. 

If |H(f)| ≅ 0 for 0 < |f| < f1 and |f| > f2, the filter is called Bandpass. 

If |H(f)| = constant for all frequencies, the filter is an Allpass filter. 

 

Bandpass Signals: 

Bandpass signals form an important class of signals. This is due to the 

fact that practically all methods for transporting information use 

modulation systems that transform the baseband information into 

bandpass signals. In this section, we are concerned with real bandpass 

signals. Let x(t) ∈ IR be a bandpass signal. Due to the Hermitian 

symmetry (X(f) = X*(−f)), the information in the positive frequency is 

enough to characterize completely the signal. A real bandpass signal is 

characterized by: 

( ) 0X f =  for 10 f f< <  and 2f f>  ( 1 2f f< ). 

The bandwidth of the bandpass signal is defined as being the 

difference B = f2 − f1. If B << f1, the signal is a narrow bandpass signal. 
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Bandpass signals are completely described by their low frequency 

envelop. 

In order to describe quite simply bandpass signals, we have to 

introduce some mathematical tools.  

 

The Hilbert Transform 

In this section of the course, we are going to introduce a tool that 

allows us to transform a real signal, with a two sided spectrum, into a 

complex signal with the same spectrum, but only for positive 

frequencies. 

To begin, consider the real sinewave x(t) = cosωt and the phasor 

x+(t) = exp(jωt) = cosωt + jsinωt. The respective spectra are: 

( ) ( )0 0

1 1
( )

2 2
X f f f f fδ δ= − + + and ( )0( )X f f fδ+ = − . 

We can remark that the spectrum of the phasor is the same (within a 

scale factor of 2) as the one of the sinewave for the positive 

frequencies while it is zero for negative frequencies. Furthermore, the 

phasor is equal to the sum of the sinewave and the same signal phase 

shifted by 90°. We can generalize this relationship to most signals. 

In order to phase shift signals by 90°, we introduce a transform called 

the Hilbert Transform. 

The Hilbert transform of a signal x(t) is the signal x(t) equal to the 

original signal with all frequencies phase shifted by 90°. The 

operation of shifting the phase of a signal by a constant value is a 

linear time invariant operation. This means that the signal x (t) is 
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obtained from x(t) by a filtering operation. In fact, the filter is an 

allpass one. This means that: 

ˆ( ) ( ) * ( )x t h t x t=  or ˆ ( ) ( ) ( )X f H f X f= where ( ) 1H f =  and 

[ ]
0

2arg ( )

0
2

f
H f

f

π

π

− >= 
 <


 

So, we can write 
sgn

2( ) sgn
j f

H f e j f
π−

= = − .  

We have already computed the Fourier transform of the signum 

function. Using the duality property, we obtain: 

1
( )h t

tπ
=  

giving 

1 ( )
ˆ( )

x
x t d

t

λ λ
π λ

+∞

−∞
=

−∫  

In general it is easier to compute the Hilbert transform in the 

frequency domain since it amounts to shifting the frequencies by 90°. 

cosωt = sinωt,   sinωt = −cosωt. 

If we apply the Hilbert transform to a signal x(t) that is itself the 

Hilbert transform of a signal x(t), we phase shift x(t) by 180°. This 

means that we simply invert the signal. 

ˆ̂( ) ( )x t x t= −  

The above relation provides the inversion formula: 

ˆ1 ( )
( )

x
x t d

t

λ λ
π λ

+∞

−∞
= −

−∫  
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The following property is important in the analysis of bandpass 

signals. 

Theorem: 

Given a baseband signal x(t) with X(f) = 0 for |f| ≥ W and a highpass 

signal y(t) with Y(f) = 0 for |f| < W (non-overlapping spectra), then 

x(t)y(t) = x(t)y(t). 

Example: if 0( ) ( )cosy t x t tω=  with X(f) = 0 for |f| ≥ ω0, then 

0ˆ( ) ( )siny t x t tω= . 

 

The analytic signal 

using the analogy of the sinusoid and the phasor, we can define a 

signal having a spectrum that exists only for positive frequencies. It is 

the analytic signal associated with x(t): 

ˆ( ) ( ) ( )x t x t jx t+ = +  

We obtain, in the frequency domain: 

[ ]ˆ( ) ( ) ( ) ( ) 1 sgnX f X f jX f X f f+ = + = +  

so,                     

2 ( ) 0

( ) (0) 0

0 0

X f f

X f X f

f
+

>
= =
 <

 

We can also define another analytic signal, but that exists only for 

negative frequencies. 

ˆ( ) ( ) ( )x t x t jx t− = −  
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2 ( ) 0

( ) (0) 0

0 0

X f f

X f X f

f
−

<
= =
 >

 

We can remark that [ ] [ ]( ) Re ( ) Re ( )x t x t x t+ −= = . So, it is simple to 

extract the original signal from the analytic one. We have also 

( ) ( )
( )

2

x t x t
x t + −+=  which is analogous to cos

2

j t j te e
t

ω ω

ω
−+=  

Using analytic signals, we can now give important properties of 

bandpass signals. 

Consider a real bandpass signal x(t), such that ( ) 0X f =  for 

10 f f< <  and 2f f>  ( 1 2f f< ), and consider a frequency f0 between 

f1 and f2, i.e.  f1 ≤ f0 ≤ f2, then we can express the signal as: 

0 0( ) ( )cos ( )sinx t a t t b t tω ω= −  

where a(t) and b(t) are baseband signals bandlimited to 

[ ]2 0 0 1max ,f f f f− − . The above representation is called the 

quadrature representation. We can also represent the signal as 

( )0( ) ( )cos ( )x t r t t tω ϕ= +  

where r(t) and ϕ(t) are also baseband signals. This representation is 

called a modulus (amplitude) and phase (argument) representation. 

Proof: 

Consider the analytic signal associated with x(t). x+(t) = x(t) + jx(t). Its 

spectrum is X+(f) = 2X(f) for positive frequencies and zero for negative 

ones, i.e. X+(f) = 2X(f)u(f). If we shift its spectrum down to dc by f0, 

we obtain a bandlimited signal 



 26 

0( ) ( ) j t
xm t x t e ω−

+=  

0 0 0( ) ( ) 2 ( ) ( )xM f X f f X f f u f f+= + = + +  

 This signal is baseband and is in fact bandlimited to 

[ ]2 0 0 1max ,f f f f− − . Its spectrum has no particular symmetry (in 

general). So, the signal is complex. This means that we can write: 

( ) ( ) ( )xm t a t jb t= + where the two signals are real and have the same 

bandwidth as mx(t). The signal mx(t) is called the complex envelop of 

x(t). We can recover the signal x(t) by shifting it back to f0. 

0( ) ( ) j t
xx t m t e ω

+ =  

( )( )0
0 0

0 0

( ) Re ( ) Re ( ) ( ) cos sin

( )cos ( )sin

j tx t m t e a t jb t t j t

a t t b t t

ω ω ω

ω ω
+ = = + +   

= −
 

We can also express the complex envelop in modulus and phase: 

( )( ) ( ) j t
xm t r t e ϕ= giving: [ ]0( ) ( )cos ( )x t r t t tω ϕ= +  along with 

2 2( ) ( ) ( )r t a t b t= + , 1 ( )
( ) tan

( )

b t
t

a t
ϕ −=  

0 0( ) ( )cos , ( ) ( )sina t r t t b t r t tω ω= =  

(q.e.d.) 

In a bandpass signal, the information is contained in the complex 

envelop. In many cases, it is easier to process the envelop of the signal 

instead of processing directly the bandpass signal. 
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Filtering a bandpass signal: 

Consider a real narrow bandpass signal x(t) having a bandwidth W 

centered around a frequency f0 and consider a real bandpass filter 

(with impulse response h(t))with a bandwidth B that covers 

completely the signal x(t). The transfer function H(f) is of course the 

Fourier transform of h(t).  

We define the equivalent lowpass filter hlp(t) as the lowpass filter 

having as transfer function Hlp(f) the positive frequency half of H(f) 

translated down to zero by −f0. So: 

0 0( ) ( ) ( )lpH f H f f u f f= + +  

If we call x(t) the input of the bandpass filter and y(t) the output, we 

have:  

( ) ( ) ( )y t h t x t= ∗  or ( ) ( ) ( )Y f H f X f= . Introducing the complex 

envelops: 

0( ) ( ) j t
xx t m t e ω

+ =  and 0( ) ( ) j t
yy t m t e ω

+ = . In the frequency domain, this 

becomes: 0( ) ( )xX f M f f+ = − and 0( ) ( )yY f M f f+ = − .  

Since ( ) ( ) ( )Y f H f X f= , then ( ) ( ) ( )Y f H f X f+ += . This implies 

that 0 0( ) ( ) ( )y xM f f H f M f f− = − , this relation is valid for positive 

frequencies, so we can write, without affecting the previous relation: 

0 0( ) ( ) ( ) ( ) ( )y xM f f u f H f M f f u f− = − . If we make the change of 

variable f' =f − f0, we obtain:  

0 0 0( ') ( ' ) ( ' ) ( ' ) ( ')y xM f u f f H f f u f f M f+ = + + or 

( ) ( ) ( )y lp xM f H f M f=  
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So, bandpass filtering a bandpass signal amounts to lowpass filtering 

its complex envelop by the equivalent lowpass filter. 

Example: 

Consider the following parallel RLC circuit: 

 

 

The impedance of the circuit is: 

2 2
0

0

1
( )

1 1
1 T

R
Z

jC jQ
R jL

ω
ω ωω

ω ωω

= =
−+ + +

where 0

1

LC
ω = ;

0TQ RCω= . 

If QT > 10, this impedance can be approximated quite closely by: 

0

( )
1

R
Z

j
ω ω ω

α

= −+
 , ω > 0, 

1

2RC
α = and it is essentially different 

from zero only in the vicinity of ω0. 

If the input is the current flowing through the circuit and the output is 

the voltage, we have a narrow bandpass filter. Let the current x(t) be: 
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0( ) cos cosmx t A t tω ω=  with 0mω ω<< . The signal is already in 

quadrature form with ( ) cos ma t A tω= , ( ) 0b t = . So, the complex 

envelop is ( ) cosx mm t A tω= . The equivalent lowpass filter has is: 

( )
2

1
lp

R
Z f

f
j

π
α

=
+

 so the complex envelop of the output is the 

sinewave mx(t) filtered by Zlp(f). So,  

( )( ) ( ) cos ( )y lp m m lp mm t Z f A t Arg Z fω  = +    

So, 1

2

2
( ) cos tan

2
1

m
y m

m

fAR
m t t

f

πω
απ

α

−  = −   
   +  

 

 

And finally  

0 1
02

2
( ) Re ( ) cos tan cos

2
1

j t m
y m

m

fAR
y t m t e t t

f

ω πω ω
απ

α

−   = = −        +  
 

Group delay and phase delay: 

Consider a very narrow bandpass signal centered on a frequency f0 and 

having a bandwidth W (W << f0). This signal is to be filtered by a filter 

having a transfer function H(f). The signal is: 

[ ]0( ) ( )cos ( )x t r t t tω θ= +  

Because of the narrowness of the bandwidth of the signal, we can 

make the following approximations for the transfer function: 

[ ]( ) ( )exp ( )H f A f j fϕ=  and around f0, we can assume that the 

amplitude response is constant, and that the phase response can be 

approximated by its first order Taylor series. 
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0( )A f A≃  and 0 0( ) ( )f k f fϕ ϕ + −≃  for f around f0. 
0f f

d
k

df

ϕ
=

= . 

The complex envelop of the signal is: [ ]( ) ( )exp ( )xm t r t j tθ=  and the 

equivalent lowpass filter transfer function is: 

 ( )0 0 0 0( ) ( ) ( ) explpH f H f f u f f A j kfϕ= + + = +   . 

So, the complex envelop of the output is given by: 

( )0 0
0 0( ) ( ) ( )j kf j jkf

y x xM f A e M f A e M f eϕ ϕ+= = . Using the time delay 

theorem: 0
0( )

2
j

y x

k
m t A e m tϕ

π
 = + 
 

. Finally, the output of the filter is: 

0 0 0 02
0 0( ) Re Re

2 2

k
j t

j j t j j t
x

k k
y t A e m t e A e r t e e

θϕ ω ϕ ωπ

π π

 + 
 

       = + = +      
       

 

So, we obtain: 

0 0 0( ) cos
2 2

k k
y t A r t t tω θ ϕ

π π
    = + + + +        

. Introducing the 

"phase delay" 0

0

( )
p

ϕ ωτ
ω

= −  and the "group delay" 
0

g

d

d ω ω

ϕτ
ω =

= − , we 

finally get: 

( ) ( )0 0( ) cos ( )g p gy t A r t t tτ ω τ θ τ = − − + −   

We can remark that the carrier and the complex envelop are not 

delayed by the same amount (unless the phase response is a linear 

function of the frequency). 
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