

Karim BAICHE
MCA, Department of Electrical Systems Engineering
Faculty of Technology

University M'hamed BOUGARA-Boumerdes

Year - 2024

 Calculators and Interfacing

 Course Materials

 With Lab handouts

Summary

Introduction .. 3

Chapter 1: General and historical information on Computer Science ... 2

1.1-Introduction ... 2

1.2- A bit of history ... 4

1.2.1- Introduction .. 4

1.2.2- Mechanical calculation ... 5

1.2.3- Electromechanical calculation .. 6

Chapter 2: Basic Architecture .. 11

2.1- Von Neumann model ... 11

2.2- The Central Processing Unit .. 12

2.3- The Central Memory (Main Memory) .. 12

2.4- I/O interfaces .. 12

2.5- Buses .. 13

Chapter 3: The Processor (Central Processing Unit, CPU) .. 14

3.1- Introduction .. 14

3.2- Basic architecture of a microprocessor .. 14

3.2.1- The Control Unit ... 15

3.2.2- The Processing Unit .. 15

3.2.3-Execution Cycle of a Statement/Instruction .. 16

3.2.4- Instruction Set ... 18

3.3- Special Processors .. 27

Chapter 4: The Intel 8086 Microprocessor .. 29

4.1- Introduction .. 29

4.2- Internal Architecture of the intel 8086 Microprocessor ... 29

4.2.1- Description of the intel 8086 .. 29

4.2.2- The 8086 Microprocessor Registers ... 29

4.3- Representation and coding of instructions ... 31

4.4 8086 Instructions ... 32

4.4.1 Definition ... 32

4.4.2- Instruction Description Template ... 32

4.4.3- Transfer instructions ... 34

4.4.4- Increment, decrement ... 35

4.4.5 Opposite of a number ... 36

4.4.6 Arithmetic Instructions .. 36

4.4.7 Boolean and logical instructions .. 40

4.4.8 Assembler tests .. 43

4.4.9 The Stack ... 47

4.4.10 Input-Output Instructions: .. 48

4.4.11 Shift and Rotate Instructions .. 48

Chapter 5: Memories ... 52

5.1- Introduction .. 52

5.2- Organizing a memory .. 52

5.3- Characteristics of a memory .. 53

5.3.1- Capacity .. 53

5.3.2- The format of the data .. 54

5.3.3- Access time ... 54

5.3.4- Le temps de cycle ... 54

5.3.5- Throughput ... 54

5.3.6- Volatility ... 54

5.3.7- Modes of access .. 54

5.4- Different types of memory ... 55

5.4.1- Random Access Memory (RAM) ... 55

5.4.2- Criteria for choosing between SRAM and DRAM .. 57

5.4.3- Read Only Memories .. 57

Chapter 6: Input/Output Interfaces ... 64

6.1- Introduction .. 64

6.2- The I/O Interface .. 64

6.3- Data Exchange Techniques .. 65

6.3.1- Polling ... 65

6.3.2- Interruption ... 65

6.3.4- Direct Exchange to Memory (DMA) .. 67

6.4- Types of Links ... 68

6.4.1- Parallel Link ... 68

6.4.2- Serial Link .. 69

6.5- Architecture of a PC .. 71

6.5.1- The chipset .. 71

6.5.2- BIOS (Basic Input Ouput Service) ... 72

6.5.3- The Clock ... 72

6.5.4- Connection ports ... 72

6.5.5- The socket ... 72

Lab Handouts ... 73

Biblipgraphy ...

Introduction

 This course of "Calculators/Computers and Interfacing" or "Computer Architecture" is

aimed at students in the field ST (Science and Technology), electrical engineering

(Telecommunication, Electronics, ...) as well as students of MI (Mathematics and Computer

Science).

 It aims to give a global idea, for these students, about computer machines, from the

architectural point of view as well as their operating principle.

 It is very clear that nowadays, computer systems or intelligent systems are invading us.

They are everywhere in our daily lives, telephone, TV, washing machine and even the house itself

(smart home). For this, it is necessary for anyone working in this field or using microprocessor

systems to have a clear idea about the architecture and operation of their systems.

 The document is divided into 6 chapters. Chapter 1 presents some notions of computer

science as well as the historical evolution of these systems. Chapter 2, gives an idea of the basic

architecture of computer machines. Chapter 3 and 4, are complementary, the first presents the

architecture and operation of the processor in a general way as for the 4e it presents in detail the

Intel 8086 processor. Chapter 5 presents the different types of memories and their operating

principles. And to close, the 6th chapter details the different modes of communication with external

devices.

2

Chapter 1: General and historical information on Computer Science

1.1-Introduction

Initially a computer was a digital calculator. It is now an information processing machine.

It is able to acquire and store information, perform processing and retrieve information.

Computer science has become:

« THE SCIENCE OF INFORMATION PROCESSING»

A computer can be cut into functional blocks. Information processing is done at the level

of a processor. The actions that it must perform are defined by instructions. To be accessible to the

processor the data to be processed and the instructions must be stored in a memory. The processor

and memory are connected by a bus. In addition, the user must be able to provide the computer

with data and instructions to follow, as well as the results. Inputs and Ouputs devices are therefore

required.

Figure 1:Components of a computer

Each functional block can itself be described by a set of functional units. This is referred

to:

• Processor architecture,

• Memory architecture, etc.

• Architecture of a network with multiple computers.

This shows the emergence of the notion of levels of representation. At each level an object

considered is described as a set of interconnected blocks. At the next level each of these blocks is

in turn described as a set of interconnected blocks and so on.

Central

Unit

Chapter 1: General and historical information on Computer Science

3

This hierarchical breakdown into levels depends on the needs of the design or the tools used:

it is neither fixed nor unique.

We can, for example, go down to the level of logic gates and even to the level of the

transistors that make up these gates.

The architecture of a computer is the representation of its functional units and their

interconnections.

The choice of an architecture is always the result of a compromise:

 Between performance and cost;

 Between efficiency and ease of construction;

 Between overall performance and ease of programming;

 etc...

Each solution adopted for a given machine, at a given moment and for a given market, can

very quickly be called into question by a new technological progress. Similarly, architectures

proposed at one time, then abandoned for technical or economic reasons, may one day be used

again.

Whatever its size (mini, micro, super, hyper, etc.) we always find in a computer the same

functional blocks:

 One or more processing units;

 Memory;

 One or more hard drives, constituting permanent memory;

 Communication devices with the operator: a screen, a keyboard, very often a mouse;

 External communication devices such as a printer;

 Devices for archiving: magnetic tape, optical disk;

 etc.

Connected by buses, links or networks.

Computing is also embedded in a large number of everyday devices, as varied as

 Washing machines,

 Beverage dispensers,

 Cars

 Or bank cards.

 Etc...

Chapter 1: General and historical information on Computer Science

4

If, compared to a conventional computer, the tasks to be carried out are not as versatile and if the

constraints are different, there are however the same bricks.

It is important to realize that:

 Hardware and software are inseparable, especially at the design level of any computer

system.

 As far as the hardware is concerned, we detail some functional blocks.

 As far as software is concerned, we will limit ourselves to a few simple considerations

about machine language.

1.2- A bit of history

1.2.1- Introduction

To summarize the history of computer science or computers, it is often necessary to

schematize. For each invention, we usually retain only one name. But often this invention

concretizes a collective approach that has been spread over more or less time. Very often also

predecessors have been forgotten. Man has always needed means of calculation. Let us cite as an

example the word itself, whose etymology calculi means pebbles in Latin (used on the abacuses

of the Romans).

Figure 2: Abacuses of the Romans

To be able to calculate we needed numbering. As an example, we cite the Roman

numeration: MDCCCLXXIIIRomain=187310. Or the decimal numbering linked to the technology

of the first pocket calculator: the hand (digiti). So, Digital Computing then meant counting on

one's fingers.

A very important innovation was the use of positional notation, which gives different values

to numerical symbols according to their position in the written number. This positional notation is

only possible with a symbol for zero. Thanks to the symbol 0, it became possible to differentiate

11, 101 and 1001 without resorting to additional symbols (MDCCCLXXIIIRomain).

This notation was introduced to Europe through the Arabs, with Islam extending from the

borders of China to Spain.

Chapter 1: General and historical information on Computer Science

5

The so-called Arabic system had been developed in India about 300 BC. This introduction

was made thanks in particular to the translation, around 820, of the works of the Baghdad

mathematician Al-Khuwarizmi, whose title of one of the books (al-jabr) is at the origin of the word

algebra. The first documents attesting to the use of the Arabic system in Europe date from 976,

but it was not until the fourteenth century that it completely replaced the Roman numbering. Not

only did the writing of numbers become more compact, but written calculations were greatly

simplified.

1.2.2- Mechanical calculation

 XVIIth century: appearance of the first mechanical calculation systems, based on

cogwheels (gearweels).

 1614, when John Napier (or Neper), Scottish mathematician, invented the first logarithms.

He thus reduced the operations of multiplication and division to simple additions or

subtractions.

Figure 3: The Neperian

 1622: William Oughtred improved Neper's work by giving more precision.

 In 1623, Wilhelm Schickard invented for Kepler a "calculating clock" for calculating

ephemeris.

 In 1642, at the age of 19, Blaise Pascal built, to help his father commissioner for taxation,

an "arithmetic machine" capable of processing six-digit additions and subtractions.

 The Pascaline is considered the first self-retaining adder.

Chapter 1: General and historical information on Computer Science

6

Figure 4: Pascaline

 In 1673, Gottfried Leibniz improved Pascaline by automating the repetitive additions and

subtractions necessary for multiplication and division.

 Leibniz also invented the binary system and showed the simplicity of binary arithmetic.

 In 1728, the French mechanic Falcon built the first loom and ordered its operation with a

wooden board pierced with holes.

 It is the first machine controlled by a program.

 1820-1830, an English mathematician, Charles Babbage, brought together calculating

machines and control systems in order to perform complex calculations requiring the

execution in sequence of several arithmetic operations.

 In particular, this machine defined the principle of the sequence of successive iterations for

the realization of an operation, named algorithm in honor of the Arab mathematician Al-

Khuwarizmi.

 In 1854 George Boole proposed his mathematical formulation of logical propositions

which applied to the binary system is the basis of the functioning of computers.

1.2.3- Electromechanical calculation

 In 1890, Hermann Hollerith built a statistical calculator that was used for the U.S. Census.

It was an electromechanical machine that performed better than mechanical machines. On

this occasion he developed the punch card and invented the information coding system that

bears his name. The presence or absence of a hole was detected by means of needles that

passed through the holes and each closed an electrical circuit by dipping in a bucket of

mercury.

 Hollerith founded the Tabulating Machine Company in 1896 to produce his maps and

mechanographic machines.

Chapter 1: General and historical information on Computer Science

7

 In 1924, it became the International Business Machines Corporation: IBM.

 In 1904: John Fleming invents the diode (the first vacuum tube)

Figure 5: Vacuum tube

 In 1938, Konrad Zuse created with modest means a mechanical programmable binary

computer, the Z1.

 In 1939, he perfected his machine by replacing some of the mechanical parts with

electromechanical relays (Z2).

 In 1941 the Z3 and Z4 were born and were used for aeronautical calculations.

 In 1939, John Atanasoff and Clifford Berry made a 16-bit binary adder. They were the first

to use vacuum tubes.

 In 1941 IBM and Harward, jointly developed one of the last electromechanical computers

the Mark 1 or ASCC (Automatic Sequence Controlled Calculator). It was a huge 5-ton

machine, covering 25 m2 and consuming 25 kW. It had 3000 relays and 760000

mechanical parts. The program was read on a strip of paper, the data from a second strip

of paper or a card reader.

 In 1945, an insect (bug) jammed a relay, causing a malfunction of this analytical machine,

hence the computer term "Bug" which means a malfunction in a program.

2. The Age of Electronics

A. 1st generation (1940-1960), use of vacuum tubes

 1940: invention of the printed circuit board (wafer with tracks to connect components)

Chapter 1: General and historical information on Computer Science

8

 Also in 1941, John Atanasoff and Clifford Berry built the first binary tube computer: the

ABC (Atanasoff-Berry Computer). It had a memory of 60 words of 50 bits and an

arithmetic and logical unit. Although the program was not stored in memory, the ABC is

often considered the first real computer.

 Early 1945: ENIAC (Electronic Numerical Integrator And Calculator), 1st programmable

electronic computer but requiring to reconnect hundreds of cables for each calculation

because its internal memory was too small;

Figure 6: ENIAC

 It consisted of 19000 tubes, 1500 relays, consumed 170 kW, weighed 30 tons and covered

an area of 72 m2. It was about 500 times faster than the Mark 1 (about 330 multiplications

per second)

 However, its programming was done using plugs to be plugged into a table of connections.

 The programming work could take several days.

 At the end of the same year, John von Neumann, a consultant on ENIAC, proposed to

encode the program in digital form and save it in memory, with greater flexibility and

speed. It thus laid the foundations for the architecture of the modern computer.

 In 1948, William Shockley, John Bardeen and Walter Brattain invented the bipolar

transistor.

 It quickly replaced the lamps that brought reliability and speed to second-generation

computers.

 Size and consumption decreased significantly.

Chapter 1: General and historical information on Computer Science

9

Figure 7: Semiconductor transistor

B. 2nd generation (1960-1970), use of transistors

 The first computer to use transistors was the TRADIC in 1955.

 At the same time, IBM marketed the first hard disk (5 disks of 61 cm in diameter for 5

MB).

 Ferrite torus memories were also available.

 DEC's PDP-8 was the first minicomputer to be distributed in large series (50,000 copies).

 1st DBMS (database management system);

 1st integrated circuits;

 1st programming languages (1960: Lisp, Cobol, Fortran, 1964: Basic)

C. 3rd generation (1970-1980), use of integrated circuits

 Corresponds to the use of integrated circuits.

 1971, the Intel 4004, the first 4-bit microprocessor, the first integrated circuit incorporating

compute unit, memory and input-output management. It had 2300 transistors.

Figure 8: Intel 4004 Microprocessor

 1972, the 8008 (8 bits, 200 KHz, 3500 transistors). The first microcomputer, the Micral N,

was built in 1973 by a French company R2E.

 1st multi-user operating systems:

1. Multics (1969)

2. Unix (1972)

3. 1971: Arpanet (ancestor of the internet)

Chapter 1: General and historical information on Computer Science

10

 1974: François Moreno invents the smart card

 1965: Gordon Moore notes that "the number of transistors that can be integrated on an

integrated circuit chip doubles every 18 (to 24) months". Moore's law ("experimental

law/observation", it has always been true): the power of new microprocessors and the

capacity of new memories double every 18 months at most (between 12 and 18 months)

D. 4th generation (1980-1990), use of large-scale integration

 Chip incorporating hundreds of thousands of transistors

Figure 9: Large scale integrated circuit

 Personal computers;

 Peripherals (mouse, CD-ROM, ...);

 Internet

 1980: A branch of IBM adopts MS-DOS (developed, discontinued, and sold to MicroSoft

by another branch of IBM). Microsoft monopolizes the software market on the best-selling

machine (PC).

 1991: Linus Torvalds creates Linux by rewriting/lightening the Unix kernel.

E. 5th generation (1990-...), Parallelism & Internet & Increasingly large integration

 Parallelism (in the microprocessor, several microprocessors, ...)

 Semiconductor memories

 Beginning of the merger of computing, telecommunications and multimedia, WWW:

World Wide Web

 Increasing integration

 Very large-scale integration: (more than 1 billion transistors with 3 nm lithography).

 Wireless network (Wifi, 5G, etc...)

11

Chapter 2: Basic Architecture

2.1- Von Neumann model

To process information, a microprocessor alone is not enough, it must be inserted into a

system with a minimum of programmed information processing.

John Von Neumann is at the origin of a model of a universal machine of programmed

information processing (1946).

This architecture serves as the basis for most microprocessor systems today.

Figure 10 : Architecture of Von Neumann

 According to this way of seeing, two architectures have been developed. That of Von

Neumann which consists in putting the programs (codes) as well as the data on the same memory

(a single address bus) but separate into segments (CS: Code segment, DS: Data segment) and the

other of Hardvard which separates between the program memory and the data memory (two

address buses).

Figure 11: Architecture of Von Neumann VS Architecture of Harvard

 Central

Processing
Unit

Memory
Data + Code

CPU

I/O

interfaces

Data

Bus

Data
Bus

Address

Bus

Architecture of Von Neumann

Memory
Program/Cod

CPU

I/O

interfaces

Data

Bus

Memory
Data

Architecture of Harvard

Data

Buses

Code
Memory
Adress

Bus

Data
Memory
Address

Bus

Address
Bus

Address
Bus

Chapter 2: Basic Architecture

12

2.2- The Central Processing Unit

It is composed of the microprocessor which is responsible for interpreting and executing the

instructions of a program, reading or saving the results in memory and communicating with the

exchange units.

All activities of the microprocessor are clocked by a clock. The microprocessor is

characterized by:

1. Its clock frequency: in MHz or GHz

2. The number of instructions per second it is able to execute in MIPS (million instructions

per second)

3. The size of the data it is able to process in bits

2.3- The Central Memory (Main Memory)

It contains the instructions for the running program or programs and the data associated with

that program.

Physically, it often breaks down into:

1. A read-only memory (ROM = Read Only Memory) responsible for storing a

program. It is a read-only memory.

2. A random-access memory (RAM = Random Access Memory) responsible for

storing intermediate data or calculation results. You can read or write data in it, this

data is lost when power is turned off.

Note: Hard drives, flash drives, CDROMs, etc. are storage devices and are considered secondary

memories.

2.4- I/O interfaces

They ensure communication between the microprocessor and peripherals:

 Sensor

 Keyboard

 Monitor or display,

 Printer

 Modem

 …

Chapter 2: Basic Architecture

13

2.5- Buses

A bus is a set of wires that ensures the transmission of the same type of information. There

are three types of buses carrying information in parallel in a programmed information processing

system:

Data Bus: bidirectional that ensures the transfer of information between the microprocessor

and its environment, and vice versa. Its number of lines is equal to the processing capacity

of the microprocessor (8, 16, 32 or 64 bits).

Address Bus: unidirectional that allows the selection of information to be processed in a

memory space (or addressable space) that can have 2n locations, with n = number of wires

of the address bus.

Control Bus: consisting of a few wires that ensure the synchronization of information flows

on the data and address buses.

Note: When a component is not selected, its outputs are set to the "high impedance" state so as

not to disturb the data circulating on the bus (it has a very high output impedance = open circuit).

Figure 12: The different system buses

Central
Processing

Unit

14

Chapter 3: The Processor (Central Processing Unit, CPU)

3.1- Introduction

A microprocessor is a complex integrated circuit (a few square millimeters) characterized

by:

 A very large integration (a few billion)

 Endowed with the ability to interpret and execute the instructions of a program.

It is responsible for:

 Organize the tasks specified by the program

 Ensure their execution.

It is the brain of the system!

3.2- Basic architecture of a microprocessor

A microprocessor is built around two main elements:

 One control unit

 A processing unit

associated with registers responsible for storing the various information to be processed.

These three elements are linked together by internal buses allowing the exchange of information.

Figure 13: CPU Architecture

Control

Unit

Processing
Unit

: :

Internal address bus

Internal Data Bus

Register 1 Register 1
:

Register n Register n

Chapter 3: The Processor (Central Processing Unit, CPU)

15

3.2.1- The Control Unit

It makes it possible to sequence the sequence of instructions. It performs:

 The in-memory search of the instruction.

 The decoding of it

 Ensure its execution

 Preparation of the following instruction.

In order to carry out its task, it is composed of:

Program counter (PC): a register whose contents are initialized with the address of the
first instruction of the program. It always contains the address of the statement to be
executed.

Instruction Register (IR): arranges the statement to be executed

Instruction decoder: Decodes the instruction to be executed and generates the appropriate
codes.

Command/Control Logic Block (or Sequencer):

 Organizes the execution of instructions at the beat of a clock.

 Elaborates all internal or external synchronization signals (control bus) of the
microprocessor according to the various control signals from the instruction
decoder or the status register for example.

 It is an automaton made either in such a way:

 Cable

 Micro-programmed, we then speak of micro-microprocessor.

3.2.2- The Processing Unit

It includes the circuits that provide the processing necessary for the execution of
instructions.

The Arithmetic and Logical Unit (ALU): which is a complex circuit that ensures logical
functions (AND, OR, Comparison, Shift, etc.) or arithmetic (Addition, subtraction).

Accumulators: which are working registers that are used to store an operand at the
beginning of an arithmetic (logical) operation and the result at the end of the operation.

Chapter 3: The Processor (Central Processing Unit, CPU)

16

Figure 14: Block diagram of the Microprocessor

3.2.3-Execution Cycle of a Statement/Instruction

The microprocessor only includes a certain number of instructions which are coded in binary.

The processing of an instruction can be broken down into three phases.

Phase 1: Search for the instruction to be processed

1. The PC (Program counter): contains the address of the following program instruction. This

value is placed on the address bus by the control unit that emits a reading order.

2. After a certain time (memory access time), the contents of the selected memory box are

available on the data bus.

3. The instruction is stored in the processor's IR (Instruction Register).

Figure 15: Phase 1, Search for the instruction to process

M
em

or
y

C
P

U

Chapter 3: The Processor (Central Processing Unit, CPU)

17

Phase 2: Decoding the instruction and finding the operand

1. The IR register now contains the first word of the instruction that can be encoded over

multiple words.

2. This first word contains:

 The operating code that defines the nature of the operation to be performed (addition,

rotation, ...)

 And the number of words of the instruction.

3. The control unit transforms the instruction into a sequence of elementary commands

needed to process the instruction.

4. If the instruction requires data from memory, the control unit retrieves its value from the

data bus.

5. The operand is stored in a register.

Figure 16: Phase 2, Decoding the instruction and finding the operand

Phase 3: Executing the Instruction

1.The firmware performing the instruction is executed.

2.The flags are positioned (state register).

3.The control unit positions the PC for the next instruction.

Chapter 3: The Processor (Central Processing Unit, CPU)

18

Figure 17: Phase 3, Execution of the statement

3.2.4- Instruction Set

The first step in designing a microprocessor is defining its instruction set. The instruction

set describes the set of elementary operations that the microprocessor will be able to perform. It

will therefore partly determine the architecture of the microprocessor to be realized and in

particular that of the sequencer.

3.2.4.1- Instruction Type

The instructions found in each microprocessor can be classified into 4 groups:

 Data transfer to load or save in memory, perform transfers from register to register, etc.

 Arithmetic operations: addition, subtraction, division, multiplication, etc.

 Logical operations: AND, OR, NO, NAND, comparison, test, etc...

 Sequence control: connection, test, etc...

3.2.4.2- Coding

Instructions and their operands (parameters) are stored in main memory. The total size of an

instruction (the number of bits needed to represent it) depends on the type of instruction and also

on the type of operand.

Each instruction is always encoded on a whole number of bytes to facilitate its decoding. A

statement/instruction consists of two fields:

 The instruction code, which tells the processor which instruction to perform

 The operand field that contains the data, or the reference to a data in memory (its address).

Chapter 3: The Processor (Central Processing Unit, CPU)

19

Operation Code Operand Code
1110 0101 1010 0010

E 5 A 2

The number of instructions in the instruction set is directly related to the format of the

instruction code. Thus, one byte makes it possible to distinguish a maximum of 256 different

instructions.

3.2.4.3- Addressing mode

An addressing mode defines how the microprocessor will access the operand. The different

addressing modes depend on the microprocessors but we generally find:

 Register addressing where the data contained in a register is processed (Addition of

Reg1+REG2)

 Immediate addressing where we immediately define the value of the data (Reg

Incrementation)

 Direct addressing (indirect, indexed, ...) where we process a data in memory:

 Direct: Operand code contains the address of the operand

 Indirect: Operand code contains the address of the operand address

 Indexed: Operand code contains an index that must be added to the index register

to have the operand address

 …

Note: Depending on how the data is addressed, a statement will be encoded by one or more

bytes.

3.2.4.4- Execution time

Each instruction requires a certain number of clock cycles to complete. The number of cycles

depends on the complexity of the instruction and also on the addressing mode. It takes longer to

access the main memory than a processor register.

The duration of a cycle depends on the clock frequency of the sequencer.

3.2.4.5- Programming languages

1- Machine language:

It is a language understood by the microprocessor. It is difficult to master since each

instruction is encoded by its own sequence of bits.

Chapter 3: The Processor (Central Processing Unit, CPU)

20

In order to facilitate the task of the programmer, different languages have been created

more or less evolved.

2- Assembly language:

It is a language "close" to machine language. It is composed by instructions generally quite

rudimentary called mnemonics. These are essentially operations of :

 Data transfer between registers and outside the microprocessor (memory or peripheral),

 Or arithmetic or logical operations

Each statement represents a different machine code. Each microprocessor may have a

different assembler.

3- High-level language:

It is more adapted to humans, and the applications they sought to develop:

 Abstracting from any machine architecture

 These languages allow the expression of algorithms in a form easier to learn, and to

dominate (C, Pascal, Java, etc...).

 Each instruction in high-level language will correspond to a succession of instructions in

assembly language (machine language).

Figure 18: Different levels of programming languages

3.2.4.6-Microprocessor Performance

We can characterize the power of a microprocessor by the number of instructions it is able

to process per second. To do this, we define:

1. CPI (Cycle Per Instruction) which represents the average number of clock cycles required

to execute an instruction for a given microprocessor. It is calculated by applying the

arithmetic mean of the microprocessor instruction set, as follow:

Chapter 3: The Processor (Central Processing Unit, CPU)

21

𝐶𝑃𝐼 =
∑ 𝑪𝑰𝒊 ∗ 𝑵𝒊𝒊

∑ 𝑵𝒊𝒊

Where, 𝑪𝑰𝒊 is the cycle (the number of clock cycles) of some instructions, and 𝑵𝒊 is the

number of such instructions in the entire Microprocessor instruction set.

2. MIPS (Millions of Instructions Per Second) which represents the processing power of the

microprocessor.

𝑀𝐼𝑃𝑆 =
𝑭𝑯

𝑪𝑷𝑰

where FH is the frequency of the Microprocessor in Mhz.

Example: If your microprocessor is clocked at 2.8 GHz (FH =2.8x103 Mhz), and it has

the following instruction set detail matrix:

ቂ
1 2 3 4 5
10 24 15 8 5

ቃ

where the 1st row is 𝑪𝑰𝒊 , the cycle (the number of clock cycles of some instructions) and

the 2nd row is 𝑵𝒊, the number of them in the set. Applying this, we get:

𝐶𝑃𝐼 =
∑ 𝑪𝑰𝒊 ∗ 𝑵𝒊𝒊

∑ 𝑵𝒊𝒊
=
𝟏 ∗ 𝟏𝟎 + 𝟐 ∗ 𝟐𝟒 + 𝟑 ∗ 𝟏𝟓 + 𝟒 ∗ 𝟖 + 𝟓 ∗ 𝟓

𝟏𝟎 + 𝟐𝟒 + 𝟏𝟓 + 𝟖 + 𝟓
=
𝟏𝟔𝟎

𝟔𝟐

𝐶𝑃𝐼 = 𝟐. 𝟓𝟖

 having FH and CPI, we get:

𝑀𝐼𝑃𝑆 =
𝑭𝑯
𝑪𝑷𝑰

=
𝟐, 𝟖 ∗ 𝟏𝟎𝟑

𝟐. 𝟓𝟖
= 𝟏𝟎𝟖𝟓

So, the power/performance of this microprocessor is 1085 million instructions per second (MIPS).

To increase the performance of a microprocessor, we can:

1. Either increase the clock frequency (hardware limitation),

2. Either reduce the CPI (choice of a suitable instruction set).

3.2.4.7-Concept of RISC and CISC architecture

Currently the architecture of microprocessors consists of two main families:

 CISC (Complex Instruction Set Computer)

 RISC (Reduced Instruction Set Computer)

There are others (hybrids).

Chapter 3: The Processor (Central Processing Unit, CPU)

22

1- CISC Architecture

It was thought that it was more interesting to submit complex instructions to the

microprocessor. Thus, rather than encoding a complex operation by several smaller

instructions, which would require as much very slow memory access, it seemed preferable

to add to the microprocessor's instruction set a complex instruction that would perform this

operation.

 Architecture with a large number of instructions.

 The microprocessor must perform complex tasks with a single instruction.

 For a given task, a CISC machine executes a small number of instructions, but each

requires a greater number of clock cycles.

 The machine code of these instructions varies from instruction to instruction and

therefore requires a complex decoder (microcode).

2- RISC Architecture

Statistical studies have shown that programs generated by compilers are most often

satisfied with assignments, additions and multiplications by constants. Thus, 80% of high-level

language processing used only 20% of microprocessor instructions. Hence the idea of reducing

the instruction set to the most commonly used ones and improving processing speed.

RISC vs CISC Architecture

The choice will depend on the intended applications. Indeed, if we reduce the number of

instructions to perform a treatment, we create complex instructions (CISC) that require more

cycles to be decoded. And if we decrease the number of cycles per instruction, we create simple

instructions (RISC) but then we increase the number of instructions needed to perform the same

process.

RISC Architecture CISC Architecture

1. Simple instructions, taking only one clock cycle

2. Fixed format instructions

3. Simple decoder (wired)

4. Many registers

5. Only Upload and Backup instructions have

access to memory

6. Few addressing modes

7. Complex compiler

1. Complex instructions, taking several clock cycles

2. Instructions in variable format

3. Complex decoder (microcode)

4. Few registers

5. All instructions are likely to access memory

6. Lots of addressing modes

7. Simple compiler

Table 1: RISC vs CISC Architecture

Chapter 3: The Processor (Central Processing Unit, CPU)

23

3.2.4.8- Core Architecture Enhancements

All microprocessor improvements are aimed at reducing program execution time. The first

idea that comes to mind is to simply increase the frequency of the microprocessor's clock.

However, the acceleration of frequencies causes an increase in consumption, which leads to a rise

in temperature.

For this reason, the work is aimed at lowering the CPI. To do this, there are several ways

that mainly affect the internal architecture of the CPU. These techniques include:

3.2.4.8.1- Pipeline Architecture

The execution of an instruction is broken down into a succession of steps and each step

corresponds to the use of one of the functions of the microprocessor.

Example of the 4-phase execution of a statement:

Figure 19: Phases of execution of a statement

Classic model:

Figure 20: Phases of execution of a statement, classic model

Piped model:

Figure 21: Execution phases of a statement, piped model

Search Decoding ExecuƟng Save Result

Chapter 3: The Processor (Central Processing Unit, CPU)

24

Performance gain

The machine starts executing an instruction each cycle. The pipeline is fully occupied from the

fourth cycle onwards. The gain obtained therefore depends on the number of stages of the pipeline.

To execute n instructions, assuming that each instruction executes in k clock cycles, you must:

 n*k Clock cycles for sequential execution (classical model).

 k clock cycles to execute the first instruction then n-1 cycles for the following n-1

instructions if a k-stage pipeline is used

The gain obtained is therefore of:

𝑮 =
𝒏 ∗ 𝒌

𝒌 + 𝒏 − 𝟏

When the number n of instructions to be executed is large with respect to k, we can assume that

we divide the execution time by k.

 AMD's Athlon includes an 11-stage pipeline.

 Intel's Pentium 2, 3, and 4 include a 12, 10 and 20 to 35 stage pipelines, respectively. In

the Core series II processors (i3, i5, and i7), there are 14 stages in the processor pipeline.

 Regarding other modern processors:

o ARM up to 7: 3 stages (still widely used is simpler devices)
o ARM 8-9 : 5 stages ;
o ARM 11 : 8 stages ;
o Cortex A7 : 8-10 stages ;
o Cortex A8 : 13 stages ;
o Cortex A15 : 15-25 stages.

Pipeline issues (hazards)

There are several issues (hazards) with setting up a pipeline. In fact, the longer the pipeline,

the higher the number of cases where it is not possible to achieve maximum performance. There

are three (3) main cases where the performance of a pipelined processor can be degraded. These

cases of performance degradation are called hazards.

 Structural hazard which corresponds to the case where two statements need to use

the same CPU resource (dependency conflict).

 Data hazard which occurs when one statement produces a result and the next

statement uses that result before it can be written to a register.

 Control hazard which occurs whenever a branch instruction is executed (the

branching prediction mechanism gives a reliability of 90 to 95%).

Chapter 3: The Processor (Central Processing Unit, CPU)

25

Figure 22: Pipeline hazards

3.2.4.8.2- Cache Memory

There is access latency between memory and the processor because the memory is no

longer able to deliver information as quickly as the processor is able to process it.

One of the solutions used to hide this latency is to have a very fast memory between the

microprocessor and the memory. This is called a memory cache.

This compensates for the low relative speed of the memory by allowing the microprocessor to

acquire data at its own speed (SRAM, Static RAM, of reduced size).

Its function is to store the most recent or most often used information by the microprocessor.

Now, it is integrated into the microprocessor and even comes on several levels (L1, L2, ...).

Cache Successes: It is called cache success, if the required data or instruction is present in the

cache and it is then sent directly to the microprocessor. Otherwise, it is called a cache defect.

Figure 23: Cache success

Cache fault: The data or instruction is not in the cache, and the cache controller then sends a

request to the main memory. Once the information is retrieved, it sends it back to the

microprocessor while storing it in the cache.

Chapter 3: The Processor (Central Processing Unit, CPU)

26

Figure 24: Cache fault

The memory cache provides a performance gain only in the first case. Its performance is

therefore entirely linked to its success rate. It is common to experience average success rates

in the range of 80 to 90%.

3.2.4.8.3- Superscalar Architecture

Another way to gain performance is to execute multiple statements at the same time. The

superscalar approach (implemented in the first Pentium, 1993) consists of equipping the

microprocessor with several processing units working in parallel. The instructions are then

distributed among the different execution units. It is therefore necessary to be able to support

a large flow of instructions and for this to have a powerful cache.

Figure 25: Scalar Architecture

Figure 26: Superscalar Architecture

Chapter 3: The Processor (Central Processing Unit, CPU)

27

3.2.4.8.4- Pipeline and Superscalar Architecture

The principle is to execute the instructions in a pipelined way in each of the processing

units working in parallel.

Figure 27: Superscalar Instruction Architecture

Figure 28: Piped Superscalar Architecture of Instructions

3.3- Special Processors

A- The microcontroller

Minimum system on a single chip. It contains a CPU, RAM, ROM, and I/O ports:

 Also includes specific functions such as programmable meters to perform time

measurements, ADCs or DACs to fit into acquisition chains, interfaces for networks, etc...

 Adapted to best meet the needs of embedded applications (domestic appliances, acquisition

chain, smart card reader, etc..).

 On the other hand, generally less powerful in terms of speed, treatable data size or

addressable memory size than a microprocessor.

B- The Digital Signal Processor, DSP

The DSP (Digital Signal Processor) is optimized to perform digital signal processing (FFT

calculation, convolution, digital filtering, etc.).

PU 1 Search Decoding ExecuƟng Save Result

PU 2 Search Decoding ExecuƟng Save Result

Chapter 3: The Processor (Central Processing Unit, CPU)

28

The fields of application of the D.S.P were originally telecommunications and the military

sector. Today, applications have diversified towards multimedia (CD player, MP3, etc.), consumer

electronics (digital television, mobile phone, etc.), automation, instrumentation, automotive

electronics, etc.

29

Chapter 4: The Intel 8086 Microprocessor

4.1- Introduction

 The objective of this chapter is to understand the architecture and instruction set of the

8086. Then, the following points will be developed:

 Internal architecture of the 8086

o Arithmetic and logical unit (ALU)

o Control/Command unit

 Processing and execution of instructions

o Assembly language

o Representation and coding of instructions

 8086 instructions set

4.2- Internal Architecture of the intel 8086 Microprocessor

4.2.1- Description of the intel 8086

 Appeared in 1978

 40-pin DIP (Dual In-line Package) package.

 16 bits of data

 20 bits address

 Addresses and data are multiplexed,

 AD0/AD15. The capture of the address is done

by the Address Latch Enable (ALE) signal.

 Figure 29: Intel 8086 Chip

4.2.2- The 8086 Microprocessor Registers

 4 General registers: AX, BX, CX and DX. Each general register is composed of two

registers of 2 bytes (8 bits) (e.g., AX = AH*256 + AL, AH is the high weight register

and AL is the low weight register).

 2 Index registers: SI (Source Index) and DI (Destination Index)).

 4 Segment registers: CS (Code Segment), DS (Data Segment), ES (Extra segment)

et SS (Stack Segment).

Chapter 4: The Intel 8086 Microprocessor

30

 3 pointer registers: IP (instruction Pointer), SP (Stack Pointer), and BP (Base

Pointer).

 1 Status Register: FR (Flag Register), register flags are: overflow, carry, auxiliary

carry, sign, parity, zero, interrupt, and step-by-step execution.

Figure 30: Address / data signal demultiplexing

Figure 31: Internal architecture of the 8086

Address Latch

Chapter 4: The Intel 8086 Microprocessor

31

 Intel's 8086 microprocessor, like any other processor, consists of running a program written

in machine language. The program is a precise sequence of instructions given by the manufacturer.

 For ease of reading and work, the manufacturer delivers the product with in addition to the

machine language the assembly language.

4.3- Representation and coding of instructions

The instruction is a basic operation that can be decoded and executed by the

microprocessor, where each instruction has a given format.

The general format of a statement is:

Mnemonic Operand 1, [Operand 2]

 Mnemonic: is the name of the operation

 Operand 1: is usually a register or memory cell

 Operand 2: is either a register, a memory cell or a value

Example:

0100

MOV AX,[DE88]

SUB AX,BX

INC AX

JMP 0240

Each instruction is placed in memory in encoded form. This representation is called

machine code.

The encoding of the instruction is performed by breaking down the instruction into subgroups of

bits called fields, specifying the characteristics of the instruction.

The different fields are:

 Operation code:

 Data type:

 Register:

 Addressing mode:

code indicating the operation (ADD, MOV, SUB, etc...).

1 per byte and 0 per word (2 bytes).

indicates the number of one of the registers used.

Specifies addressing mode.

Each instruction is encoded in binary and is decoded by the μP when executed. Below are the

different codes of the MOV statement:

Chapter 4: The Intel 8086 Microprocessor

32

Machine Code Assembly language

B8FF00

A1FF00

89D8

8B07

MOV AX,00FF

MOV AX,[00FF]

 MOV AX,BX

MOV AX,[BX]

8086 Operation Code Examples

Figure 32: 8086 Operation Code example

4.4 8086 Instructions

4.4.1 Definition

It is the set of instructions that can be executed by the μP. There are several groups of

statements:

 Data transfer instructions
 Arithmetic and logic instructions
 Shift and rotation instructions
 The comparison instruction
 Jump and branch instructions
 Instructions relating to the status register

4.4.2- Instruction Description Template

For all instructions that have more than one operand addressing mode, a table showing these

modes is given in the following form:

xxx operande1, operande2, ... comment

…

….

Chapter 4: The Intel 8086 Microprocessor

33

In the left-hand column (xxx) is the mnemonic of the instruction. In the next column

(operand1), we find the mode of addressing the operands. The right-hand column (operand2),

which is absent in some tables, gives some additional information.

The addressing modes are indicated as follows:

 AL, AH, ... a special registry

 Register: one of the 8 or 16 bits register AL, AH, AX, BL, BH, BX, CL, CH, CX,

DL, DH, DX, SI or DI.

 Variable: a memory address of a piece of data in the data segment.

 Register/Variable: A register or memory address of a piece of data in the Data

segment.

 Constant: one value

 Label: A memory address of an instruction in the code segment.

Most of the statements change the flags in the FLAGS registry. A table shows the effect of

the commonly described instruction on these indicators. It has the following form:

O D I T S Z A P C

 Carry Flag (CF): This indicator is set to 1 when there is a withholding of the result at 8

or 16 bits. It is involved in the operations of addition (carry) and subtraction (borrow) on

natural numbers. In particular, it is set by the ADD, SUB, and CMP statements

 Parity Flag (PF): If the result of the operation contains an even number of 1, this flag is

set to 1, otherwise zero.

 Auxiliary Flag (AF): This bit is equal to 1 if we have a carry of the low weight quarter in

the higher weight quarter.

 Zero Flag (ZF): This flag is set to 1 when the result of an operation is zero. When a

subtraction (or comparison) has just been performed, ZF=1 indicates that the two operands

were equal. Otherwise, ZF is set to 0.

 Sign Flag (SF): SF is set to 1 if the high bit of the result of an addition or subtraction is 1;

otherwise, SF=0. SF is useful when working with signed integers, because the high bit

gives the sign of the result.

 Trap Flag (TF): So that the microprocessor executes the program step by step in

debugging mode.

 Interrupt enable Flag (IF): To hide interrupts coming from outside, this bit is set to 0,

otherwise the microprocessor recognizes the interrupt from outside.

Chapter 4: The Intel 8086 Microprocessor

34

 Direction Flag (DF): Auto Increment/Decrement: Used during string statements to auto-

increment or auto-decrement the SI and DI.

 Overflow Flag (OF): if there is an arithmetic overflow this bit is set to 1. That is to say

the result of an operation exceeds the capacity of the operand (register or memory box),

otherwise it is 0.

The first line shows the names of the bits of interest in FLAGS. The second line (blank here)

indicates the effect of the instruction on a particular bit. We note:

 * : The bit is changed based on the result of executing the statement

 ? : The bit has an undefined value after the statement is executed

 1 : The bit is set to 1

 0 : The bit is set to 0

A blank check box indicates that the flag is not changed by the statement.

4.4.3- Transfer instructions

MOV Transfer of Value

These instructions perform data transfers between two memory addresses, two registers, or

between a register and memory. This corresponds to the assignment of high-level languages A:=B

(𝐴 ← 𝐵).

MOV register/variable, register

MOV register, register/variable

MOV register, segment register

MOV segment register, register

MOV register/variable, constant

Segment register, indicates one of the CS, DS, ES, or SS registers.

The MOV instruction transfers data to a registry or memory address. Transferring the value

from one segment register to another segment register. There is no addressing mode in the MOV

command that allows the value of one segment register to be transferred to another segment

register. We only have the ability to transfer the value of a segment register to a data register and

the ability to transfer the value from a data register to a segment register. Also, to achieve our goal,

we will have to carry out the transfer in two steps, using an intermediate data register:

 Transfer the value from the source segment register to a 16-bit data register.

O D I T S Z A P C

Chapter 4: The Intel 8086 Microprocessor

35

 Transfer the value from this data register to the destination segment register.

For example, suppose we want to transfer the contents of the DS registry into the ES

registry. We can write it in the following form:

mov ax, ds

mov es, ax

XCHG Exchange of Values

The XCHG instruction swaps the contents of two memory or register locations. Suppose

the AX register contains the value 88 and the DX register contains the value 99, the execution of

the instruction:

xchg ax, dx

gives: AX contains a value of 99 and DX contains a value of 88.

4.4.4- Increment, decrement

Here we see two types of instructions that are very frequently used and which are in fact

special cases of addition and subtraction instructions, increment and decrement. Increment means,

“add 1”, while decrement means “remove 1”. Note, however, that we often use the terms

increment and decrement even if the quantities added or removed are different from 1, generally

when the modified variable is a counter.

DEC Decrement

O D I T S Z A P C
* * * * *

DEC subtracts 1 from the contents of the operand, without changing the hold indicator.

Let the following assembler instructions be used:

mov al, 10h

dec al

AL then contains the value 0fh. Bits Z, O, P, A and S set to 0.

O D I T S Z A P C

DEC register/variable

XCHG register/variable, register

XCHG register, register/variable

Chapter 4: The Intel 8086 Microprocessor

36

INC Increment

O D I T S Z A P C
* * * * *

INC adds 1 to the contents of the operand, without changing the carry indicator. Let the

following assembler instructions be used:

mov al, 5fh

inc al

AL then contains the value 60h. The Z bit is set to 0 (the result of the increment is not zero), the

auxiliary hold indicator bit A is set to 1 (holding pass between bits 3 and 4 during increment), the

bit O and bit S are set to 0 (no capacity overflow, the result sign is positive).

4.4.5 Opposite of a number

NEG Negation by complement to 2

NEG register/variable

O D I T S Z A P C
* * * * * *

NEG transforms the value of a register or memory operand into its complement to 2. Thus,

after executing the instructions:

mov ax, 75h

neg ax

the AX register contains the value ff8bh (complement to 2 of 0075h).

4.4.6 Arithmetic Instructions

As with many processors, the 8086 has +, −, ×, and ÷ instructions that process entire data

encoded on a byte or word. To perform operations on more complex data (floating-point numbers,

for example), they will need to be programmed.

INC register/variable

Chapter 4: The Intel 8086 Microprocessor

37

ADD Addition without carry

ADD register/variable, register

ADD register, register/variable

ADD register/variable, constant

O D I T S Z A P C
* * * * * *

The ADD statement adds the contents of the source register to the destination register,

without carry, i.e.:

destination ← destination + source

The carry is positioned according to the result of the operation.

For example, if the following statements are executed:

mov ax, a9h

add ax, 72h

then the AX register contains the value 11bh, the bit C is set to 1, the auxiliary carry A is set to

0.

If we consider the following two statements;

mov ax, 09h

add ax, 3ah

then the AX register contains the value 43h, the C bit is set to 0, the auxiliary carry A is set to 1.

SUB Subtraction without carry

SUB register/variable, register

SUB register, register/variable

SUB regiser/variable, constante

O D I T S Z A P C
* * * * * *

The SUB statement subtracts the contents of the source register from the destination register,

without carry, i.e.;

destination ← destination – source

The carry is positioned according to the result of the operation.

For example, if the following statements are executed;

Chapter 4: The Intel 8086 Microprocessor

38

mov ax, 39h

sub ax, 18h

the AX register then contains the value 21h. The Z, S, and C bits of the FLAGS register are set

to 0 because the result is not zero, its sign is positive, and no carry are generated.

If we consider the following two statements;

mov ax, 26h

sub ax, 59h

the AX register then contains the value ffcdh. The Z bit is set to zero. The C, A, and S bits are set

to 1.

IMUL

MUL Multiplications in assembler

IMUL register/variable

O D I T S Z A P C
* ? ? ? ? *

Both IMUL and MUL statements perform multiplications. The IMUL statement multiplies

signed operands. The MUL statement multiplies unsigned operands.

The carry (C) and overflow (O) indicators are set to one if the result cannot be stored in the

destination operand.

Adding or subtracting data encoded at n bits gives a result of at most n + 1 bits. The extra

bit is the retainer and is stored in the C bit of flags. On the other hand, multiplying two data of n

bits gives a result of 2n bits.

 In their first form, which takes 8-bit operand data (i.e., the result is 16 bits), the MUL and

IMUL statements are the product of the value contained in the AL register with the value of

the provided operand. The result is placed in the AX register.

 In their second form, which takes a 16-bit operand data (so the result is 32 bits), the MUL

and IMUL statements take the product of the value contained in the AX register with the

value of the provided operand. The result is placed in the DX and AX register pair. DX

contains the high weight of the result, AX the low weight.

Example of 8-bit multiplication: Let’s look at the following instructions:

mov al, 4h

mov ah, 25h

imul ah

Chapter 4: The Intel 8086 Microprocessor

39

at the end of the execution of these 3 instructions, the AH register contains the value 94h, which

is the product of 4h by 25h. To understand the difference between IMUL and MUL statements,

let's look at the following examples:

mov bx, 543h

mov ax, 3257h

imul bx

at the end of the execution of these 3 instructions, AX contains the value dfc5h and DX the value

108h, i.e. the hexadecimal value 108dfc5h, the product of 543h by 3257h. Since both data are

positive, the result is the same whether we use the IMUL statement or the MUL statement.

Now let's consider the sequence of statements:

mov bx, -543h

mov ax, 3257h

imul bx

at the end of their execution, AX contains the value 203bh and DX contains the value fef7h, which

is the hexadecimal value fef7203bh, in decimal -17358789. If we replace IMUL with MUL, the

result is meaningless (314e203bh, in decimal 827203643, positive value!).

IDIV

DIV Divisions in assembler

IDIV register/variable

O D I T S Z A P C
? ? ? ? ? ?

Both DIV and IDIV carry out the operations of dividing and calculating remainder. DIV

performs it on unsigned data, IDIV on signed data.

In all cases, the dividend is implicit. The divisor is provided as an operand. The result

consists of the quotient and the rest of the division. The remainder is always less than the divisor.

You can choose between:

 The division of a 16-bit piece of data stored in AX by an 8-bit piece of data that provides a

quotient in AL and a remainder in AH over 8 bits.

 The division of a 32-bit piece of data stored in the DX (high-weight) and AX (low-weight)

register pair by a 16-bit piece of data that provides a quotient in AX and a remainder in DX

on 16 bits.

Chapter 4: The Intel 8086 Microprocessor

40

Let the following few assembler lines:

mov ax, 65h

mov dx, 6h

div dl

After they are executed, the AX register contains the value 0510h, quotient of 10h in AL and 05h

the rest of the division in AH.

For both statements, if the divisor of the division is zero, a Division by zero message will

be displayed automatically.

In the case of an IDIV-signed division, the remainder has the same sign as the dividend

and its absolute value is always less than the divisor.

To understand how these two statements work, consider the following example:

mov ax, 3257h

mov bx, 543h

div bx

At the end of executing this sequence of instructions, the register AX will contain the value 9h

which is the quotient of 2372h by 435h, and the register DX will be 2fch which is the remainder

of the division. If we replace DIV with IDIV, the result is unchanged since both the divisor and

the dividend are positive.

If we now consider the sequence:

mov ax, 3257h

mov bx, -543h

idiv bx

we will then have AX which contains the value ffff7h (evening 65527 in decimal) and DX the

value 2fch (i.e. 764 in decimal). If we replace IDIV with DIV, the result is meaningless.

4.4.7 Boolean and logical instructions

These instructions, which are available on all processors, work on bit-level data (and not

numeric values like the instructions seen so far).

Chapter 4: The Intel 8086 Microprocessor

41

AND Ligical AND

AND register/variable, register

AND register, register/variable

AND register/variable, constante

O D I T S Z A P C
0 * * ? * 0

AND performs a bit-by-bit logic between the source operand and the destination operand. The

result is stored in the destination operand. Consider the following two lines:

mov al, 56h

and al, 2ch

The AL register then contains the 14h value obtained as follows:

56h 0101 0110
∧ 2ch 0010 1100

14h 0001 0100

The S and Z bits are set to zero and the P bit is set to 1.

OR Logical OR

OR register/variable, register

OR register, register/variable

OR register/variable, constante

O D I T S Z A P C
0 * * ? * 0

OR performs a bit-by-bit logical ou-logic between the source operand and the destination

operand. The result is stored in the destination operand. Consider the following two lines:

mov al, 56h

or al, 2ch

The AL register then contains the resulting value 5eh as follows:

56h 0101 0110
∨ 5ch 0101 1100

5eh 0101 1110

The S and Z bits are set to zero and the P bit is set to 1.

Chapter 4: The Intel 8086 Microprocessor

42

XOR Logical Exclusive-OR

XOR register/variable, register

XOR register, register/variable

XOR register/variable, constante

O D I T S Z A P C
0 * * ? * 0

XOR performs a bit-a-bit exclusive or--bit between the source operand and the destination

operand. The result is stored in the destination operand. Consider the following two lines:

mov al, 73h

and al, 6bh

The AL register then contains the 18h value obtained in the following way:

 73h 0111 0011

⊕ 6bh 0110 1011

 18h 0001 1000

The S and Z bits are set to zero and the P bit is set to 1.

NOT Logical Negation

NOT register/variable

O D I T S Z A P C

NOT transforms the value of a register or operand into its bit-by-bit logical complement. Consider

the following two lines:

mov al, 59h

not al

The AL register then contains the value a6h obtained as follows:

Not 59h 0101 1001

 a6h 1010 0110

The S and P bits are set to 1, the Z bit to 0.

Chapter 4: The Intel 8086 Microprocessor

43

4.4.8 Assembler tests

In assembler, there are no tests like in high-level languages such as Pascal or C. However,

it is of course possible to carry out tests. This is done using the bits of the FLAGS register as a

test condition and a conditional branching instruction (jump if some bits of the FLAGS register

are 0 or 1) to trigger the then or otherwise part of the test.

General principle

The bits of the FLAGS register are positioned by the instructions we have already seen

(arithmetic instructions, logical instructions, ...). They are also positioned by instructions

specifically designed for testing and which have no other effect than to position the bits of FLAGS

according to certain conditions on their operands. These instructions are CMP and TEST.

Once the flags are set, a so-called conditional jump instruction tests a bit or a combination

of bits of FLAGS and, depending on the result:

 Performs a sequence break (a jump) to a specific location in the code where execution

continues normally.

Continue in sequence if the test does not give a positive result.

We present the CMP statement, the conditional and unconditional jump statements and then

present the coding of the tests on examples.

Comparison Instruction

CMP Comparison

CMP register/variable, register

CMP register, register/variable

CMP register/variable, constante

This is the most commonly used statement for positioning flags before performing a

conditional jump statement.

CMP allows you to compare two values. To do this, CMP subtracts the second operand

from the first, without modifying the destination operand, but by positioning the indicators

according to the result. So, if the subtraction result is zero, so the indicator Z has been set to 1, it

means that the two values being compared are equal. Using reasoning of the same kind, we can

find out whether the two values are different, strictly ordered or not.

O D I T S Z A P C
* * * * * *

Chapter 4: The Intel 8086 Microprocessor

44

Upon completion of the execution of the following two statements:

mov al, 23h

cmp al, 34h

The AL register is not modified by the execution of the CMP statement and still contains the

previously assigned value at 23h. The carry indicator C is set to 1, indicating that the second

operand of the CMP statement is greater than the value of the first operand. Since the zero Z

indicator is set to 0, this indicates that the two data are different (otherwise, subtracting a number

from itself gives 0, so the Z bit is set to 1). The S-sign bit is also set to 1 because 23h – 34h is a

negative number.

Jxx Conditional Jump Instructions

All conditional jump statements take the same type of operand:

JA Label Jump if above (C =0 et Z =0)
JAE Label jump if above than or equal (C =0)

JB Label Jump if below (C =1)

JBE Label Jump if below than or equal (C =1 ou Z

JC Label Jump if carry (C =1)

JCXZ Label jump if CX is 0

JE Label Jump if equal (Z =1)

JG Label Jump if greater (Z =0 ou S =0)

JGE Label jump if greater than or equal (S =0)

JL Label Jump if lower (S =0)

JLE Label Jump if less than or equal (Z =1 ou S =0)

JNC Label Jump if no carry (C =0)

JNE Label jump if not equal (Z =0)

JNO Label Jump if no overflow (O =0)

JNP Label Jump if no parity (P =0)

JNS Label jump if no sign (S =0)

JO Label Jump if overflow (O =1)

JP Label Jump if parity (P =1)

JS Label Jump If Sign (S =1)

Figure 33: 8086 Conditional Jump Instructions
All of these statements work as follows: When the condition is true, a jump is made to the

statement at the label specified in operand. Otherwise, the execution sequence is followed.

Note that lower-order tests (lower, higher, etc.) can be understood in the following way.

Suppose we compare two pieces of data by a CMP statement and then execute a JG statement,

Chapter 4: The Intel 8086 Microprocessor

45

i.e., "jump if greater". There will then be a jump if the value of the second operand of the CMP

statement is greater than the value of the first operand.

Remark: The label referenced in the conditional break statement should not be too far from the

jump statement. Otherwise, an assembly error is triggered and the message:

Relative jump out of range by xxx bytes

The "LOOP" Looping Instruction

O D I T S Z A P C

 The "loop" statement does the same function as the "for i:=N downto 0 do" statement in

algorithmic language. It executes all the instructions between "loop" and the label (the address) to

which the "loop" statement refers. The N value will be stored in the CX register and it is

decremented after each execution to "0". It decrements the content of CX by 1.

 If CX is non-zero then IP = IP + displacement

 If CX = 0, the following statement is executed.

Example:

The execution of the MOV BX, AX statement will be done after the loop has been executed 5

times.

JMP Unconditional Jump

The JMP statement makes an unconditional jump to the specified label. Unlike a conditional

jump, the jump is always made, with the FLAGS registry not interfering with this operation.

O D I T S Z A P C

LOOP Lab

JMP Label

 MOV AX, 05

 MOV CX, 05

 Label : INC AX

 ADD AX, CX

 LOOP Label

 MOV BX, AX

SI CX < > 0

SI CX =0

Chapter 4: The Intel 8086 Microprocessor

46

CALL, concept of procedure (function)

The notion of an assembly procedure corresponds to that of a function in C language, or

of a subroutine in other languages.

Figure 34: Calling Procedure

The procedure is called calculus. After statement B, the processor moves to instruction C

in the procedure, then continues until it encounters RET and returns to instruction D.

A procedure is a sequence of instructions that perform a specific action, which are grouped

together for convenience and to avoid having to write them repeatedly in the program.

Procedures are identified by the address of their first statement, which is associated with an

assembler label.

The execution of a procedure is triggered by a calling program. One procedure can itself

call for another procedure, and so on.

CALL and RET Instructions

The call to a procedure is made by the CALL statement.

CALL Address_beginning_procedure

The address is 16 bits, so the procedure is in the same instruction segment. CALL is a new

unconditional branching statement. The end of a procedure is marked by the RET statement.

RET :

RET doesn't take arguments, the processor switches to the instruction placed immediately

after the CALL.

RET is also a branching statement: the IP register is modified to return to the value it had

before the call by CALL. How does the processor find this value? The problem is complicated by

the fact that one can have any number of nested calls, as shown in the following figure (36):

Chapter 4: The Intel 8086 Microprocessor

47

Figure 35: Calling Nested Procedures

The return address, used by RET, is actually saved on the stack by the CALL statement. When

the processor executes the RET instruction, it unstacks the address on the stack (such as POP),

and stores it in IP.

The CALL statement therefore performs the following operations:

 Stack the value of IP. At this point, IP points to the instruction that follows the CALL.

 Place in IP the address of the first statement of the procedure (given as an argument).

And the RET statement:

 Unstack a value and store it in IP.

4.4.9 The Stack

The Stack is an area of memory that allows you to quickly store and retrieve values for:

 Place local variables in a subroutine,

 Save the return address (done by CALL, INT statements),

 Pass arguments to a subroutine.

A Stack works like a stack of real objects, in LIFO (Last In First Out) mode:

 It is possible to add a value to the top of the stack (stack),

 It is possible to remove the value at the top of the stack (unstack).

Instruction PUSH:

It allows the CPU registers to be stacked on top of the stack.

 PUSH Source

Instruction POP:

It allows you to unstack the CPU registers on the top of the stack

 POP Destination

Chapter 4: The Intel 8086 Microprocessor

48

Example:

Figure 36: Operating principle of PUSH and POP instruction

4.4.10 Input-Output Instructions:

 IN / OUT:

It allows you to retrieve data from a port (i.e., from the edge) or to return data to a port. In

both cases if it is a question of sending or receiving a byte we use the AL accumulator, if it is a

question of sending or receiving a word, we use the AX accumulator.

Syntax:

IN ACCUMULATOR, DX

OUT DX, ACCUMULATOR

DX: Contains the address of the port.

ACCUMULATOR: contains the data (to be received or send).

4.4.11 Shift and Rotate Instructions

Here we describe classical operations, offsets, and rotations. They are commonly

encountered because their use greatly simplifies certain treatments.

Chapter 4: The Intel 8086 Microprocessor

49

RCL ROL RCR ROR Rotations in assembler

 The various rotation instructions for the 8086 are summarized in the following figures:

Figure 37: Shifts and rotations in assembler

Rotations are frequently used binary logical operations. They consider an operand (byte

or word) as a torus whose bits they shift. When offset, a bit overflows to one side, left or right,

depending on the direction of rotation. Depending on the case, a few details differ:

RCL the high-weight bit is set in the carry indicator C, the value of this indicator being previously

set in the low-weight bit (figure 38.e)

ROL the high bit is set in the carry indicator C and in the low weight bit of the operand. The old

value of the holding indicator is not used (Figure 38.d).

The operands of the RCL, RCR, ROL, and ROR statements, being the same, we present only one,

the RCL instruction.

 RCL rotates to the left of the specified destination operand, 1 or CL times, taking into

account the contents of the carry indicator. The high bit of the destination operand is set in

the carry. The contents of the carry are put into the low-order bit of the destination operand.

 RCR Rotates to the right of the specified destination operand, 1 or CL times, taking into

account the contents of the carry indicator. The low-order bit of the destination operand is

put into the carry. The contents of the carry are put into the high bit of the destination

operand.

O

*

D I T S Z A P C

*

RCL register/variable, 1

RCL Register/variable, CL

Chapter 4: The Intel 8086 Microprocessor

50

 ROL rotates to the left of the specified destination operand, 1 or CL times, regardless of the

contents of the carry indicator. The high bit is put into the carry indicator when rotating as

well as the low bit of the operand.

 ROR Rotates to the right of the specified destination operand, 1 or CL times, regardless of

the contents of the carry indicator. The low weight bit is put in the carry indicator during

rotation as well as in the high bit of the operand.

Consider the following lines:

Mov al, 16h

Mov cl, 3

xxx al, cl

where "xxx" is a rotation statement. Depending on the choice of this instruction, we obtain the

following results:

xxx rcl rcr rol ror

al b0h 85h b0h 85h

C 0 1 0 1

SAL SHL SAR SHR Shifts in assembler

A shift operation simply involves shifting all the bits of a piece of data. Unlike rotations

which consider data (a byte or a word) as a torus, a shift considers the data as a queue; thus, the

bit that “overflows” the carry is lost.

The operands of the SAL, SAR, SHL and SHR instructions being the same, we only

present one instruction, SAL.

SAL register/variable, 1

SAL register/variable, CL

SAL and SHL are synonyms and can be used interchangeably. SAL shifts left, saving the

high order bit in the carry flag and putting a 0 in the low order bit (Figure 38.c).

SHR shifts to the right. The least significant bit is put into carry. A 0 is put in the most

significant bit of the data (figure 38.b).

SAR shifts right, saving the low bit in the carry flag.

Furthermore (and this is the difference with the previous instruction), the most significant

bit is kept (figure 38.a). The most significant bit of the initial data is therefore duplicated.

O D I T S Z A P C
* * * ? * *

Chapter 4: The Intel 8086 Microprocessor

51

Consider the following three lines:

mov al, 16h

mov cl, 3

sal al, cl

The AL register then contains the value b0h. Indeed, 16h is 00010110 written in binary. If we

shift this value three positions to the left, we get 10110000, which is b0h The C bit is set to 0.

Consider the following three lines:

mov al, 36h

mov cl, 3

sar al, cl

The AL register then contains the value 05h. The C bit is set to 1. The difference between SAR

and SAL instructions only appears if the high bit of the data is 1. The following table gives the

effect of the different shifts for two values of the data (put in the AL register).

al f0 70

sar al, 1 f8 38

shr al, 1 78 38

It should be noted that for a number, a shift of one position to the left corresponds to a

multiplication of this number by 2 and that a shift of one position to the right corresponds to an

integer division by 2. Generalizing, a shifting l positions to the left corresponds to a multiplication

by 2 and shifting l positions to the right corresponds to a division by 2. It should be noted, and

this is what justifies the existence of the two instructions SAR and SHR and their subtle

difference, that SAR performs division on a number in signed representation while SHR performs

division on a number in unsigned representation.

Of course, shift operations being known as binary logic operations and not arithmetic
operations, care should be taken when interpreting the overflow or carry indicators that will be
made at the end of a shift instruction.

52

Chapter 5: Memories

5.1- Introduction

A memory is a circuit used to record, store and retrieve information (instructions and

variables). It is this ability to memorize that explains the versatility of digital systems and their

adaptability to many situations.

The information can be written or read.

 Written = saving information in memory,

 Read = retrieval of previously saved information.

5.2- Organizing a memory

A storage unit can be represented as a storage cabinet made up of different drawers. Each

drawer then represents a memory box (slot) which can contain a single element: data. The number

of memory slots can be very high, it is then necessary to be able to identify them by a number.

This number is called address. Each piece of data then becomes accessible thanks to its address.

Figure 38: Typical Representation of a Memory

With an 'n' bit address it is possible to reference at most 2n memory slots (cells) = addressable

space. Each cell is filled with a data word (its length 'm' is always a power of 2, 8, 16, 32, 64). The

number of address wires in a memory enclosure therefore defines the number of memory slots in

the enclosure. The number 'm' of data wires defines the size of data that can be saved in each

memory slot.

n: number
of address
wires (here

3 wires)

m: number of
data wires

(ici 8 fils)

Chapter 5: Memories

53

In addition to the address bus and data bus, a memory enclosure includes:

 A command entry that allows you to define the type of action you perform with the memory

(read/write), 𝑅/𝑊ഥ .

 A selector input that allows the inputs/outputs of the enclosure to be set to high impedance,

𝐶𝑆തതതത.

We can therefore schematize a memory circuit by the following figure:

Figure 39: Elements of a Memory Circuit

A memory read or write operation always follows the same cycle:

1- Address Selection

2- Choosing the operation to be performed (𝑅/𝑊ഥ)

3- Memory Selection (𝐶𝑆തതതത = 0)

4- Reading or writing data

Remark:

Data inputs and outputs are very often grouped on bidirectional terminals.

5.3- Characteristics of a memory
5.3.1- Capacity

This is the total number of bits in memory. It's also often expressed in bytes, so that's the

number of slots. Memory capacity (size) is the number of slots, usually expressed in kilobytes or

megabytes, or even more (Terabytes).

Remark: - The kilo of computer is 1024 and not 1000 (210 = 1024 ≈ 1000).

Here are the most commonly used multiples:

 1 K (Kilo), 210 = 1024
 1 M (Méga), 220 = 1048 576
 1 G (Giga), 230 = 1 073 741 824
 1 T (Téra), 240 = 1 099 511 627 776

Chapter 5: Memories

54

 1 P (Péta), 250 = 11 258 999 906 842 624

5.3.2- The format of the data

This is the number of bits that can be memorized per memory slot (4, 8, 16, 32, 64...). We

also say that it is the width of the memorized word.

5.3.3- Access time

This is the time that elapses between the moment when a read/write operation in memory
was launched and the moment when the first information is available on the data bus.

5.3.4- Le temps de cycle

It represents the minimum interval between two successive read or write requests.

5.3.5- Throughput

C’est le nombre maximum d'informations lues ou écrites par seconde.

Figure 40: Chronogram of a reading cycle

5.3.6- Volatility

It characterizes the permanence of information in memory. The stored information is volatile

if it is likely to be altered by a power supply fault and non-volatile otherwise.

5.3.7- Modes of access

5.3.7.1- Random or direct access

The memories used to make the main memory of a microprocessor system are solid-state

memories. In this type of memory, you can directly access any information whose address you

know and the time it takes to get that information does not depend on the address. It will be said

that access to such memory is random or direct.

Chapter 5: Memories

55

5.3.7.2- Sequential Access

To access information on magnetic tape, you have to unroll the tape, locating all the recordings

until you find the one you want. Access to information is said to be sequential. The access time

varies depending on the position of the information sought.

5.3.7.3- Semi-sequential access

Access can still be semi-sequential : a combination of direct and sequential access. For a

magnetic disk (hard disk) for example, access to the track is direct, then access to the sector is

sequential.

Figure 41: Composition and operation of a magnetic hard drive

5.4- Different types of memory

5.4.1- Random Access Memory (RAM)

RAM (Random Access Memory) is RAM used for temporary data storage. It must have a

very short cycle time so as not to slow down the microprocessor. They are, in general, volatile.

There are two main families of RAM memory:

 Static RAM (SRAM)

 Dynamic RAM (DRAM)

Chapter 5: Memories

56

5.4.1.1- Static RAM (SRAM)

In static RAM (SRAM), the memory bit (point) is made up of a flip-flop.

Figure 42: RS flip-flop and its truth table Figure 43: D flip-flop and its truth table

Each flip-flop contains between 2 to 6 transistors.

Figure 44: SRAM Memory Point Equivalent in Transistors

5.4.1.2- Dynamic RAM (DRAM)

In dynamic RAM (DRAM), information is stored in the form of an electrical charge stored

in a capacitor (grid capacitor substrate of a MOS transistor). 1 to 2 transistors.

Figure 45: DRAM Memory Point Equivalent in Transistors

Chapter 5: Memories

57

5.4.1.2.1- Advantages of Dynamic RAM

 Dynamic memory has the following advantages:

 Higher integration density, as a memory point requires about four times fewer
transistors than in static memory.

 Very low consumption.

5.4.1.2.2- Disadvantages of Dynamic RAM

 Capacitor discharge due to leakage currents.

 Information is lost if it is not regenerated periodically.

 Dynamic RAMs therefore need to be refreshed regularly to maintain memorization

 This much-needed refresh has several consequences:

o It complicates the management of dynamic memories (periodic refresh).

o The duration of these actions increases the time it takes to access information.

 Reading information is destructive. This is done by discharging the capacity of the memory

point when it is loaded. So every reading must be followed by a rewrite.

5.4.2- Criteria for choosing between SRAM and DRAM

Dynamic Memory (DRAM), which provides

o Greater density of information

o lower cost per bit,

are used for central memory (main memory).

Static memory (SRAM),

o faster,

are used when the speed factor is critical, especially for small memory sizes such as caches and

registers.

5.4.3- Read Only Memories

For some applications, it is necessary to be able to retain information permanently even when

the power supply is interrupted. In this case, read-only memories are used (ROM: Read Only

Memory).

These memories are:

 Non-volatile.

 Can only be read.

 Storing data in memory is still possible but is called programming. Depending on the

type of ROM, the programming method will change.

Chapter 5: Memories

58

There are several types of read-only memories:

 ROM

 PROM

 EPROM

 EEPROM

 FLASH EPROM.

5.4.3.1- The ROM

It is programmed by the manufacturer and its contents can no longer be modified or deleted

by the user.

This memory is composed of a matrix whose programming is carried out by connecting the

rows to the columns by diodes. The address is used to select a row in the matrix and the data is

then received on the columns. The number of columns that set the size of memory words.

Figure 46: Principle of manufacturing a ROM

For programming, the user must provide the manufacturer with a mask showing the locations

of the diodes in the array.

Advantages:

 High Density

 Non volatile

 Fast Memory

Disadvantages:

 Unable to write

 Impossible to modify (any mistake is fatal).

Chapter 5: Memories

59

 Manufacturing time

 Requirement of large quantities due to the high cost of mask production and manufacturing

process.

5.4.3.2- The PROM

It is a ROM that can be programmed only once by the user (Programmable ROM).

Programming is carried out using a specific programmer.

The diode links in the ROM are replaced with fuses that can be destroyed or junctions that

can be shorted.

Figure 47: Principle of manufacturing a PROM

Fused PROMs come with all rows connected to the columns (0 at each memory point). The

programming process consists of programming the locations of the ''1'' by generating pulses of

currents via the programmer. The fuses located at the selected memory points are therefore

destroyed.

Junction PROMs, the principle is identical, except that the rows and columns are disconnected

(1 at each memory point). The programming process therefore consists of programming the

locations of the “0” by generating current pulses via the programmer; the junctions located at the

selected memory points finding themselves short-circuited by an avalanche effect.

Advantages:

 same as ROM

 Breakdown in minutes

 Relatively low cost

Disadvantages:

Chapter 5: Memories

60

 Impossible to modify (any mistake is fatal).

5.4.3.3- EPROM or UV-EPROM

To facilitate the development of a program or simply to allow a programming error, it is

interesting to be able to reprogram a PROM.

The solution is in the EPROM (Erasable Programmable ROM) is a PROM that can be

erased.

In an EPROM, the memory point is made from a FAMOS (Floating gate Avalanche injection

Metal Oxide Silicon) transistor.

 This MOS transistor was introduced by Intel in 1971 and has the particularity of having a

floating gate.

To erase this type of memory, it is exposed to about twenty minutes of ultraviolet radiation

(hence the name UV-EPROM) to cancel the charge stored in the floating grid.

Advantages:

 Reprogrammable

 Non volatile

Disadvantages:

 Unable to select a single cell to delete

 Unable to erase in-situ memory.

 Writing is much slower than on RAM (Approx. 1000x)

5.4.3.4- The EEPROM

EEPROM (Electrically EPROM) is a programmable and electrically erasable memory. It thus

addresses the main disadvantage of EPROM and can be programmed in situ.

Advantages

 Behavior of non-volatile RAM.

 Word-by-word programming and erasure possible.

Disadvantages

 Very slow for RAM use.

 Cost of realization.

Chapter 5: Memories

61

5.4.3.5- Flash Memory

Flash memory is a type of EEPROM that allows multiple memory spaces to be changed in

a single operation. This makes flash memory faster when the system needs to write to multiple

places at the same time. It was invented by Prof. Fujio Masuoka in 1980 (a Toshiba employee).

There are two different technologies that differ in the organization of their memory networks

which is related to the logic gates used (NOR and NAND). So, we're talking about:

 Architecture NOR

 Architecture NAND

5.4.3.5.1- Flash NOR

It was the first to be commercially, developed by Intel in 1988. The NOR architecture

proposes an assembly of the elementary memory cells in parallel with the selection lines as in a

classic EEPROM.

Figure 48: NOR Flash Architecture

Intel, the well-known processor manufacturer, has bet on this technology, because NOR flash

memory has:

 the ability to interact directly with the processor;

 As a result, NOR memory is mainly used for storing programs that run directly ("XIP" or

eXecute In Place):

o Rarely modified

o Computer BIOS

o Firmware (OS), firmware of phones and cameras, etc.

Advantages

 Behavior of non-volatile RAM.

 Word-by-word programming and erasure possible.

Chapter 5: Memories

62

 Low access time

Disadvantages

 Slow write/read per packet.

 Cost.

5.4.3.5.2- Flash NAND

NAND flash was developed by Toshiba in 1989. The NAND architecture provides an

assembly of the elementary cells of serial storage with the selection lines.

Figure 49: NAND Flash Architecture

Advantages:

 Behavior of non-volatile RAM.

 High integration density (low cost).

 Speed of write/read per packet

 Reduced consumption.

Disadvantages

 Unable to write/read per byte.

 Indirect I/O interface

5.4.3.5.3- Criteria for choosing between NOR Flash and NAND Flash

The major difference between NOR and NAND is their interfaces.

NOR :

 has dedicated address and data buses.

 100% safe.

NAND :

 with an indirect I/O interface.

 is not 100% safe.

The main criteria to remember are:

 capacity

Chapter 5: Memories

63

 speed

 consumption

 cost

An ideal memory would be one with a large capacity and a very short access time in order

to be able to work quickly on this information. But it turns out that high-capacity memories are

often very slow, and fast memories are very expensive.

In order to obtain the best cost-performance trade-off, a memory hierarchy is defined.

We use memories:

 Low capacity but very fast to store the information that the microprocessor uses the

most.

 Large capacity but much slower to store the information that the microprocessor uses

the least.

The further away you get from the microprocessor, the more the capacity and access time of

the memories will increase.

Figure 50: Memory hierarchy

 Registers are the fastest pieces of memory. They are located at the processor level.

(SRAM)

 Cache memory is a fast, low-capacity memory designed to speed up access to central

memory by storing the most used data. (SRAM)

 The main memory is the main organ for storing information. It contains the programs

(instructions and data). (DRAM)

 The supporting memory serves as an intermediate memory between the core memory and

the mass memory. It plays the same role as cache memory. (SRAM)

 Mass memory is a high-capacity peripheral memory used for the permanent storage of

information (SSD, Hard disk, Flash Disk, DVD).

64

Chapter 6: Input/Output Interfaces

6.1- Introduction

The function of a microprocessor system is information processing. It is therefore obvious

that it must acquire the information provided by its environment and reproduce the results of its

treatments.

A complete system has two components, one hardware, the other software.

The Hardware component includes:

 The processor,

 Peripherals

 Buses allowing everyone to communicate.

The Software Component:

It can be summed up in the operating system, which provides the user with an abstract and

simplified view of the operation of the hardware system and manages all of its resources.

Each system is therefore equipped with one or more I/O interfaces to ensure communication

between the microprocessor and the outside world.

I/O techniques are very important for system performance. There's no point in having a

microprocessor calculating very quickly if it often has to waste its time reading data or writing its

results.

During an I/O operation, information is exchanged between the main memory and a device

attached to the system. This exchange requires an interface (or controller) to manage the

connection. Several techniques are used to carry out these exchanges.

6.2- The I/O Interface

Each device will be connected to the system through an interface (or controller) whose role is

to:

 Connect the device to the data bus

 Manage exchanges between the microprocessor and the device

It is made up of:

Chapter 6: Input/Output Interfaces

65

 A control register in which the processor describes the work to be performed (transfer

direction, transfer mode)

 One or more data registers that contain the words to be exchanged between the device and

the memory

 A status register that shows if the exchange unit is ready, if the exchange went well, etc.

The interface data is accessed through an I/O address space.

6.3- Data Exchange Techniques

Before sending or receiving information, the microprocessor needs to know the status of the

device. If a device is ready to receive or transmit information!!

To ensure that the transmission is done correctly. There are 2 ways to exchange information:

 The mode programmed by polling or interruption where the microprocessor serves as an

intermediary between the memory and the peripheral

 Direct memory access (DMA) mode where the microprocessor is not responsible for data

exchange.

6.3.1- Polling

The microprocessor queries the interface to see if transfers are ready. Otherwise, he waits.

The major disadvantage is that the microprocessor often finds itself in the waiting phase. It is

completely occupied by the input/output interface. The initiative of data exchange depends on the

program executed by the microprocessor. This type of exchange is very slow.

6.3.2- Interruption

An interrupt is a signal, usually asynchronous to the current program, that can be emitted by

any device external to the microprocessor. The microprocessor has one or more inputs dedicated

to this purpose. Subject to certain conditions. It can interrupt the current work of the

microprocessor to force the execution of a program that addresses the cause of the interruption.

An interruption can be initiated by:

1. Hardware interrupt: One of the electronic components of the CPU (e.g., keyboard,

mouse, interface, printer, hard drive, etc.).

2. Software Interrupt: The program that is running.

3. Exception: An error in the running program

Chapter 6: Input/Output Interfaces

66

Note: An interrupt can be initiated by the processor itself in case of problems (division by zero,

bad memory, etc.).

In interrupt data exchange, the microprocessor executes its main program until it receives a

signal on its interrupt request line. It then takes care of the data transfer between the interface and

the memory.

6.3.2.1- Operating principle of an interrupt

Before each instruction execution, the microprocessor checks to see if there has been a query

on its interrupt line. If this is the case, it interrupts all these activities and saves the present state

(registers, PCs, accumulators, status register) in a particular register called the battery (LIFO).

Then, it runs the interrupt program and then returns to the saved state before resuming the main

program.

Remarks

1. Some interrupt source has its own permission to operate in the form of a bit to be

positioned, this is called the interrupt mask.

2. We can therefore prohibit or allow certain sources of interrupts, they are called maskable

interrupts.

3. Each interrupt source has an interrupt vector where the starting address of the program to

be executed is stored.

4. Interruptions are prioritized. In the event that multiple interrupts occur at the same time,

the microprocessor first processes the one with the highest priority.

Figure 51: Principle of Interrupt Priority

The following diagram, Fig., summarizes the organization of interrupt vectors in the 8086

microprocessor.

Chapter 6: Input/Output Interfaces

67

Figure 52: Organizing the 8086 Interrupt Vector Table

Figure 53: Exemples de type d’Interruption du 8086

6.3.4- Direct Exchange to Memory (DMA)

This mode allows the transfer of blocks of data between memory and a device without going

through the microprocessor. To do this, a circuit called a DMA (Direct Memory Access) controller

takes care of the various operations. The DMA takes care of the entire transfer of a block of data.

The microprocessor still must:

 Initiate the exchange by giving the DMA the identification of the affected device.

 Give the direction of transference.

 Provide the address of the first and last word involved in the transfer.

A DMA controller is equipped with:

 an address register,

 a data register,

Chapter 6: Input/Output Interfaces

68

 a meter

 and a control device (wired logic).

For each word exchanged, the DMA asks the microprocessor:

 Bus control,

 Reads or writes memory to the address in its register and releases the bus.

 It then increments this address and decrements its counter.

 Informs the processor of the completion of the transfer by a suspend line, when the counter

reaches zero.

Advantage of DMA:

1. The processor is free to perform any kind of processing, for the duration of the transfer.

DMA Constraint:

Limiting its own memory access for the duration of the operation, since it sometimes has

to delay some of its accesses.

Note : To allow the direct memory access device to perform its own: Cycle theft occurs.

Figure 54: DMA Cycle theft

6.4- Types of Links

Microprocessor-based systems use two different types of links to connect to devices:

 Parallel link.

 Serial link.

A type of link is characterized by its transmission rate or throughput (in bit/s).

6.4.1- Parallel Link

All the bits of a word are transmitted simultaneously. The transmission is timed by a clock.

Advantage:

 Fast Transfers

Chapter 6: Input/Output Interfaces

69

Constraint:

 Limited to short transmission distances, due to:

o Large number of lines required

o cost

o traffic congestion

o Electromagnetic interference problems between each line (reliability).

Example of a parallel PC bus: The IDE, PCI, AGP bus (the latter two are replaced by the PCI

Express).

Figure 55:Principle of parallel link

6.4.2- Serial Link

 In this type of connection, the bits constituting a word are transmitted one after the other

on a single wire.

Advantage:

 Much longer transmission distances

Constraint:

 The transmission speed is slower

Example of a PC serial bus: SATA, USB, ...

Figure 56: Principle of serial link

Serial data transmission can be conceived in two different ways:

Chapter 6: Input/Output Interfaces

70

 Synchronous mode: the transmitter and receiver have a synchronized clock which times

the transmission.

o The flow of data can be uninterrupted.

Asynchronous mode: transmission takes place at the rate of the presence of data.

o The characters sent are surrounded by a start signal and a stop signal.

6.4.2.1- Asynchronous serial link

So that the communicating elements can understand each other, it is necessary to establish a

transmission protocol. This protocol must be the same for each element. The parameters that come

into play in this type of connection are:

The length of the transmitted words: 7 bits (ASCII code) or 8 bits

 Transmission rate: range from 110 bit/s to 128000 bit/s (determines the clock speed of the

transmitter and receiver).

 Parity: the transmitted word may or may not be followed by a parity bit.

o is used to detect possible transmission errors.

o There are two types of parity:

 An even parity, the total number of bits to 1 transmitted (including the parity

bit) must be even.

 an odd parity, which is the inverse for an odd parity.

The asynchronous serial link is initiated by a Start bit and terminates a Stop bit:

 Start bit: The line at rest is in state 1 (used to test a line cut). Moving to the bottom state of

the line will indicate that a transfer is about to begin. This synchronizes the receive clock.

 Stop bit: After transmission, the line is set to level 1 for a certain number of bits in order to

specify the end of the transfer. In principle, one, one and a half or 2 stop bits are transmitted.

Chapter 6: Input/Output Interfaces

71

Figure 57: DMA Cycle Thefts

6.5- Architecture of a PC

 The architecture of a PC can be summed up in the architecture of its motherboard, Fig.58:

Figure 58: PC motherboard architecture

6.5.1- The chipset

It consists of a set of several components responsible for managing the communication

between the microprocessor and the peripherals. This is the link between the different buses on

the motherboard.

Chapter 6: Input/Output Interfaces

72

6.5.2- BIOS (Basic Input Ouput Service)

The BIOS is the program responsible for managing hardware: keyboard, monitor, hard

drives, serial and parallel links, etc. It is stored in a read-only memory (EEPROM) and acts as an

interface between the operating system and the hardware.

6.5.3- The Clock

It is used to synchronize the processing of instructions by the microprocessor or the

transmission of information on the various buses.

6.5.4- Connection ports

They allow you to connect peripherals to the different buses of the motherboard. There

are "internal" ports for connecting expansion cards (PCI, ISA, AGP) or storage devices (SCSI,

IDE, Serial ATA) and "external" ports for connecting other devices (serial, parallel, USB, firewire,

etc.)

6.5.5- The socket

This is the name of the connector for the microprocessor. It determines the type of

microprocessor that can be connected.

Different buses are seen to transport information between the microprocessor and the

memory or peripherals:

 Processor bus: it is also called a system bus or FSB (Front Side Bus). It connects the

microprocessor to the north bridge and then to the memory. It's a 64-bit bus.

 IDE Bus (Integrate Drive Electronique)

 PCI Bus (Peripheral Component Interconnect)

 AGP Bus (Accelered Graphic Port)

 ISA Bus (Industry Standard Architecture)

 SCSI Bus (Small Computer System Interface)

 USB Bus (Universal Serial Bus)

 Firewire Bus: it's a serial SCSI bus

 Serial Ata (SATA) Bus, IDE bus replacement

 PCI Express Bus, replacing PCI and AGP buses

 Bluetooth

 WIFI (WIreless FIdelity Network)

 …

73

Lab Handouts

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab1 : Calculators and Interfacing

1/4

Lab 1: Getting Started with Assembler intel 8086

Objectives:
 Familiarize yourself with the Emu8086 software.
 Get started with the Assembler language.

Material used:
 A PC.

I/ First steps in programming:

One of the basic operations that is performed in 8086
assembler programming is data transfer. This is done through the
instructions: MOV.

I – 1 / The MOV instruction:

The MOV statement (from the word Move). In assembler,
this statement transfers from a source location to a destination one:

MOV destination, source

Possible transfers:

Destination Spring
Register Register
Register Memory
Memory Register
Register Immediate value
Memory Immediate value

I – 2 / Getting started with Emu8086 :

1 – Open the emu8086 emulator:

2 – Choose a new document by clicking on New in the displayed menu.

3- Next, click on empty workspace in the list displayed in order to have
an empty document.

4- Enter the following assembly code:

5- Emulate the code by clicking on emulate on the main taskbar.

6- Two windows will be displayed. A window (Original souce code)
contains the code you just wrote.
A second window (emulator) that will allow us to execute the code,
see the contents of the different registers and many other things that
we will see as we go along.

7 - Execute the code written in this way by clicking on run.
8 – What do you notice about the content of the different registers?

...

...

..

...

...

...

9 - Now, on the emulator window, click on reload in order to reload
the code (i.e. put it back in memory to re-execute it). Then click on
single step several times and notice the changes in the registers each
time.

10 - Give the results in the following table:

MOV AL, 10h
MOV AH, 09h

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab1 : Calculators and Interfacing

2/4

10 – What is the role of Single Step?
...

...

..

11 – Register this code under the name: myprog1.asm.

I – 3 / Register and memory manipulation:
1 – Enter the following assembly code:

2 - Email the code by clicking on emulate on the main taskbar.
3 - Execute the code written in this way by clicking on run.
4– What do you notice about the content of the different
registers?
...

...

...

...

...

5– What do you notice about memory?
...

...

...

...

Indication:
After execution, we will have the following window (emulator
window), several pieces of information are present: about the
registers, the memory, about the program...

 Notice that there are multiple lines of code that end in HLT,
and the corresponding address is 0101A. This is simply due to
the fact that the program itself is stored in memory.

6– Now type 100 in the box indicating the memory address and
press keyboard enter

7 – Now look at the box corresponding to 0100 and complete
the table .

Value Meaning

01100

05

005

8- Enter the following assembly code:

9 - Emulate the code by clicking on emulate on the main
taskbar.
10 - Execute the code written in this way by clicking on run.
11 – Enter the following assembly code:

12 - Emulate the code by clicking on emulate on the main
taskbar.
13 - Execute the code written in this way by clicking on run.
14 – Complete the table below.

Value Case 1 Case 2

Physical address

Hexadecimal value

Value in decimal

ASCII Value

MOV AX, 05h
MOV [100h], AX

 Registers Memory Program

 Address Code Code Code
 physics Hexadecimal Decimal ASCII

Memory address

MOV AX, 55h
MOV [100h], AX

MOV AH, 05h
mov [100],ah

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab1 : Calculators and Interfacing

3/4

15- What is the difference between using AX and AH?
..

..

..

..

16 – Comment:
...

...

...

...

...

...

16- Enter the next assembly code and do the same work again.

17- Complete the following table:

Memory box 101h/100h 105h/104h

Hexadecimal
value

Value in
decimal

ASCII Value

18 – Comment:
..

..

..

..

19- Enter the next assembly code and do the same work again.

20- Complete the following table:

Amended Records Modified memory boxes

................................

................................

................................

................................

................................

................................

................................

................................

21 – Describe what each instruction does.

instruction Description

22- Enter the next assembly code and do the same job again.

23- Completing the following table:

Amended Records Modified memory boxes

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

................................

24 – Comment:
...

...

...

...

...

...

MOV AL, 55h
mov ah, 36h
MOV [100h], AL
MOV [104h], AX

MOV AX, 3655h
MOV [100h], AX
MOV BX, 100h
MOV CX, [BX]

MOV [100h], 36h
MOV [104h], 52h
MOV [106h], 69h
MOV BX, 100h
MOV CX, [BX]
MOV DX, [BX+4]
MOV AX, [BX]+6

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab1 : Calculators and Interfacing

4/4

25 – Describe what each instruction does.

instruction Description

26 – Conclusion and general remarks on Lab1:

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab2 : Calculators and Interfacing

1/3

Lab 2: Arithmetic Instructions in 8086

Objectives :
 Become familiar with the set of arithmetic instructions.

Material used:

 A PC.
 Emul8086 software.

Note: -To consult the instruction set, click on the "help" tab of the
emulator, a browser window opens:
- Choose "8086 Instruction Set"
- Then choose the instructions you want to use.

I/ Theoretical preparation:
A/ Reminder:

The 8086 is a 16-bit microprocessor, so it's not appropriate
to have 20-bit memory addresses [Or 5 digits in hexadecimal
representation] (This is mentioned because the technology has
produced 20-bit address buses). The solution adopted is:

 Divide the memory into pages (called segments).
 Represent a 16-bit (or 4-digit hexadecimal memory) relative

address (offset) traversing a segment.

So instead of representing an address by 20350, we use 2000 instead:
350 or: 2000 is the segment and 350 is the offset.

Analogy to the numbering used in hotels. When booking room 213 ..

It is immediately clear that this is bedroom 13 on floor 2.

(Then stage 2 represents the segment and stage 13 represents the
offset. Then we can write 2:13)

B / Give the absolute (physical) addresses of the following addresses:

Logical Address Absolute
Address

3500 : A600
1036: FFF0
2000 : 0350
3C47: 3190

Your remarks/comments on the results of the table:

...

...

...

C / Indicate the correct instructions and correct the others:

Instruction Correction
MOV AX, 9h
MOV 9h, AL

MOV AH, BX
MOV AX, [BX]

MOV AL, [BX+2]
MOV AX, N1
MOV AX, [1]
MOV AX, BL

II / Arithmetic operations in 8086:

II.1/ Unsigned numbers:

1 – Enter the following assembly code:

2-Run the program in step-by-step mode and complete the following
table:

Instruction Regis. modified
by the instruction

Result
(value)

4- Give your comments on the program:

..

..

..

5 – Now enter the following assembly code:

6- Complete the following table:

Instruction Regis. modified
by the direction Result (value)

7 – Now enter the following assembly code:

8- Complete the following table:

Instruction Regis. modified
by the direction Result (value)

MOV AX, 05h
MOV BX, 3 p.m.
ADD AX, BX
HLT

MOV AX, 195h
MOV BX, 911h
ADD AX, BX
HLT

MOV AX, 195h
ADD AL, 02h
HLT

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab2 : Calculators and Interfacing

2/3

9 – Your remarks between example 5 and 7:

..

..

..

10– Now enter the following assembly code:

11- Complete the following table:

Instruction Regis. modified by
the direction Result (value)

12 – Now enter the following assembly code:

13– What does "number" represent?

...

...

14 – Complete the following table:

Instruction
Regis./Memory Box

Modified by the
Instruction

Result (value)

15 – Give the final result in decimal and comment on:

..

..

..

16- Now enter the following assembly code:

17 – Complete the following table:

Instruction
Regis./Memory Box

Modified by the
Instruction

Result (value)

18 – Give the final result in decimal and comment on:

..

..

..

19- Now enter the following assembly code:

20 – Complete the following table:

Instruction
Regis./Memory Box

Modified by the
Instruction

Result (value)

21 – Give the final result in decimal places and comment on:

..

..

..

22- Now enter the following assembly code:

MOV AX, 1002h
INC AH
MOV BX, 0200h
DEC BH
SUB AX, BX
SUB AH, 03H
HLT

DW number?
MOV AX, 04h
MOV number, 05h
MUL number
HLT

DW number?
MOV AX, 5F4h
MOV Number, 99h
MUL number
HLT

MOV AX, 8 p.m.
MOV BL, 05h
DIV BL
HLT

DW number?
MOV AX, 0F04h
MOV DX, 35ECh
MOV number, 9BCDh
DIV number
HLT

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab2 : Calculators and Interfacing

3/3

23 – Complete the following table:

Instruction
Regis./Memory Box

Modified by the
Instruction

Result (value)

24 – Give the final result in decimal and comment on:

..

..

..

24- Conclusion and general remarks on Lab2:

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab3 : Calculators and Interfacing

Lab3: Branching instructions and comparison

in 8086 (loop concept)

Objectives :
 Familiarize yourself with the set of conditional and

unconditional branching instructions and comparison (loop
concept).

Material used:

 A PC.
 Emul8086 software.

1- Reminder: Jumps play a very important role in programming.
There are two types of jump instructions. Unconditional jump
statements, a single "JMP" statement and a set of conditional jump
statements, JE, JNE, JB, JBE, JA, JAE, ..., with which we add the
"LOOP" statement see help in the software.

2- Let the following assembler code be used:

3- Run the program, and then complete the following table:
(for a good understanding of the program, run it in step-by-step
mode and follow the evolution of the result in a table)

Reg/Var Value after each step
0 1 2 3 4 5 6 7 8 9

4- What does this program do?

..

..

..

5- Let the following assembler code be used:

Run the program, and then complete the following table:

6- Run the code: for a good understanding of the program, run it in step-
by-step mode and follow the evolution of the result in a table)

Reg/Var Value after each step
0 1 2 3 4 5 6 7 8 9

7- What does this program do?

..

..

..

8- Your remarks and conclusion between example 2 and 5:

..

..

..

9- Conclusion and general remarks on Lab3:

..

..

..

..

..

..

..

..

..

..

org 100h
T dw 10h,20h,30h,40h,50h,60h,70h,80h,90h,100h
N dw 10h
S dw?

 MOV BX, 0h
 MOV AX, 0h
 ETQ: ADD AX, T+BX
 INC BX
 INC BX
 CMP BX, N
 JL etq
 MOV S, AX
 HLT

org 100h
T dw 10h,20h,30h,40h,50h,60h,70h,80h,90h,100h
N dw 10h
S dw?
 MOV DX, 0h
 MOV CX, N
 MOV AX, 0h
 ETQ: ADD AX, T+BX
 INC BX
 INC BX
 LOOP etq
 MOV S, AX
 HLT

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab4 : Calculators and Interfacing

1/3

Lab 4: Interruptions and the Stack in 8086

Objectives :
 Stack Usage
 Use of Software Interrupts.

Material used:

 A PC.
 Emul8086 software.

I/ Theoretical preparation :
Has/

Reminder 1: The Stack

The stack is an area of memory that allows you to
quickly store and retrieve values. A stack works like a stack of
real objects, in LIFO (Last In First Out) mode. The maximum
number of values is set at the beginning. A piece of data in the
stack is determined by two parameters:

 The SS Stack Segment ;
 The Stack Pointer (SP Offset).

There are two things you can do on the stack:

 Add a value (16 bits) to the top of the stack. In this case,
we use the statement:

PUSH Register (16-bit)

The contents of the registry in question are loaded into the
SS: SP box, and then: SP becomes SP-2.

 Remove the value (16 bits) at the top of the stack (unstack).
In this case, we use the statement:

POP Register (16-bit)

The contents of the SS:SP are loaded into the registry in
question, and then: SP becomes SP+2.

Reminder 2: Interruptions

An interrupt, as the name suggests, interrupts the
normal execution of program instructions to execute others
before returning to normal operation.

An interruption can occur in two ways:

9- It can be used by the hardware to perform processing
(reading a key on the keyboard, for example). In this case,
the device triggers an IRQ (Interrupt ReQuest) that has a
number specific to the port to which the device is connected.
Each IRQ corresponds to a particular barrier. This is a
hardware interrupt (it will not be covered here).

10- It can be requested by the software running with the INT
statement. This is a software interruption, which will be our
object.

Software Interruptions:

11- Each trap has a number between 0 and 255 because it is
encoded in 1 byte.

12- The INT statement has a single operand: the number
of the interrupt to be called, but it can have multiple
subinterrupts. The sub-interrupt number is denoted by a
value (h) loaded into the register AH :

INT val (hexadecimal).

 Each interrupt corresponds to a routine whose memory
address is stored in the interrupt vector table. This table
is stored in memory at address 0000:0000, and stores for
each vector, the address of the routine to be called, in 4
bytes (offset then segment, each in 2 bytes).

II/ Operation in 8086

Part A:

1- Enter the assembly code:

2- Emulate the program.
3- Open the "emulator screen" window, by clicking on the "screen"

button in the "Emulator" window.
4- Arrange the windows so that they are all visible.
5- Run the program in single step mode
6- What do you notice on the "emulator screen" when you execute

the 'INT 21h' statement?
...

...

7- Press a key on the keyboard.
8- Repeat the program 5 times. Each time you change the character

you type. Complete the following table:

N°
Selected

keyboard key
ASCII Hex

Character Code
Value in Reg.

AL

1

2

3

4

5

9- Comment 8, after consulting the ASCII code table.

...

...

10- Your comments on the program (assembly code 1):

..

..

............................

11- Enter the assembly code:

12- Emulate the program
13- Run the program 5 times, each time you change the value in 'DL'

to one of the values that are after the ';'
14- What do you notice on "emulator screen", every time you run

the program

...

...

MOV AH, 01h
INT 9 p.m.
HLT

MOV AH, 02h
MOV DL, 42h; 46h 4Bh 3Dh 7Ah
INT 9 p.m.
HLT

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab4 : Calculators and Interfacing

2/3

15- Complete the following table:

N°
Value in
Reg. 'DL'

Displayed in
'Emulator
Screen'

ASCII Hex
Character

Code

Value in
Reg. 'AL'

1 42 hours

2 46 hours

3 4Bh

4 3Dh

5 7Ah

16- Comment 15, after consulting the ASCII code table.

...

...

17- Your comments on the program (assembly code 11):

..

..

..

Part B:

1- Enter the following assembly code:

2- Run the ''run'' program.
3- Complete the following table:

Register Contents (hex) Contents (dec)

LY

DL

DH

CX

4- In interpreting the results in Table 3, what are your

observations? And what does this program do?

...

...

...

...

..

5- Enter the following assembly code:

6- Run the ''run'' program.

7- Complete the following table:

Register Contents (hex) Contents (dec)

CH

CL

DH

DL

8- In interpreting the results in Table 7, what are your

observations? And what does this program do?

...

...

...

...

...

Part C:

1- Let the following assembler program be used:

2- Emulate the program.
3- Open the "emulator screen" window, by clicking on the

"screen" button in the "Emulator" window.
4- Open the "Stack" window, by clicking on the "stack" button in

the "Emulator" window.
5- Arrange the windows so that they are all visible.
6- Run the "run" program
7- Type the word ''TELECOM!'' in ''emulator screen''.
8- Complete the following table:

SS SP
Content ASCII code of

L content H L

9- What is the role of SP?

...

...

10- How does it work (SP)?

...

...

MOV AH,01h
MOV CX,08h

Q1: INT 9pm
PUSH AX
LOOP Etq1
HLT

MOV AH, 2Ah
INT 9 p.m.
HLT

MOV AH, 2ch
INT 9 p.m.
HLT

L3 Telecommunications, Dept.: ESE, Faculty of Technology, UMBB, Lab4 : Calculators and Interfacing

3/3

11- Looking at Table 8, comment on Program 1:

..

..

..

..

12- Note: The following program code allowed you to move to the
next line in "emulator screen":

13- Fill in program code 1 so that the second line shows the inverted
"TELECOM!" channel, but always keeping the "!" at the end.
The result will be "MOCELET!", using the data from the stack.

14- Complete the following table after you have executed the
program you have carried out.:

SS SP
Content ASCII code of

L content H L

15- In analyzing Tables 8 and 14, provide your remarks:
..

..

..

..

..

..

..

..

..

Conclusion and general remarks on Lab 4:

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...

..

..

..

..

..

..

...

..

...

..

MOV AH,02h
MOV DL,0Dh
INT 9pm
MOV DL,0Ah
INT 9pm

Mini stry_of Higher Education Jtf.rl.êâter.f! ô_rh5land Soienti-fic Research
-;ÂteJl'c^+JlS

Boumerdes
ô *Ëo.. r.a>al A.c.obàoJ91i4 à.ot
a-,1, 1l>-,;..og,a

l-*->gJgJs*ll 4 ,,r,tS

thculty of, Technology

Extrait du Procès Verbal du
Conseil Scientifique de Ia Faculté

Du 07 NI.ai 2024

Les membres du Conseil Scientifique de la Faculté de Technologie,

lors de la réunion du 07 ly'rai 2024, ont validé les rapports d'expertise effectués

par : M' HAMADOUCHE M'Hamed (professeur), M' RAHMOUNE Fayçal

(Professeur) et M' AKROUM Hamza (Maitre de Conference /A) du polycopié

de cours intitulé «calcurators and Interfacing))

(73 pages), réalisé par M' BAICHE Karim.

q-++c.üJ I +-.Ja I)i.o{ J I q-r- ÿl)dl L- 1y2p)l
PEOPLE'S DEMOCRATIC REPUBTIC OF ALGERIA

ilry of Higher Education

'ff*ïi*ffi,i; ffi *5

irâtù
s-rJrJtd.J+ll

Biblipgraphy

1- John P. Hayes, “Computer Architecture and Organization”, 2nd edition, McGraw -Hill

Book Company, International Edition 1988.

2- Harold Lorin, “Introduction to Computer Architecture”, 2nd edition, Wiley-Interscience

Publication”, 1989.

3- A. J. van de Goor, « Computer Achitecture and Design”, Addison-Wesley, 1989.

4- William D. Murray, “Computer and Digital System Architecture”, Prentice-Hall

International Editions, 1990.

5- Datasheet Intel 8086.

