EE411
Principles of Communication

1. Introduction and Basic terminology of communicaion

In this course, we are going to learn the basieaigrocessing used in communication. But
before doing so, we must have an appropriate utadatisig of what is the purpose of
communication.

Communication can be defined as the process dfrtrditing 'reliably” (or as reliably as
possible) information from one poirthé source of information) to anotherthe destination).
This can be a transmission from one point to amattgtinct point (such as microwave link)
or the source and destination can be located aaime place. This is what happens when a
processor writes data in memory.

A typical block diagram of a communication systenshown in Figure 1- 1. The word
"Channd" means the totality of the media and apparatud taethe transmission of the
information. We will encounter this word quite aften this course and in future courses. It is
a catch-all word used to describe many differemigh
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Figure 1- 1 Block diagram of a communication system

In information theory, this word (channel) means thathematical mapping between the
source and the destination. It is also used toritesthe allocated band of frequencies given
to a particular transmitting station. We will diseo other meanings as we progress in the
course. In many cases, we can use the word chendekcribe the physical mean of
transmission such as coaxial cables, fiber optitesa etc.

The system shown in Figure 1- 1 is calledienplex' communication system. In many cases,
a transmitter and a receiver are located at the gdate. If two such systems share the same
communication mean, the system is calleal f-duplex”. In this case, we must have some
kind of switching in order to connect the transenitit one location with the receiver at the
other location. An example of such system is tredague telephone system. The handset
contains a microphone and an earphone. This ktdisconnected while the phone user is
talking. There are also mangush to talk" systems that are half-duplex. On the other hdnd,
they use two different means, the system is céfigdt-duplex”.
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Figure 1- 2 Simplex communication system
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Figure 1- 3 Half-duplex communication system
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Figure 1- 4 Full duplex communication system

The above communication systems are point to mwias. There exist alsbrbadcast”
systems where there is only one transmitter and/meeivers. This is the case of the actual
radio and television broadcast. Finally, therec@m®munication systems where the
transmitters and receivers are located at nodasetwork. The network can be local (LAN:
Local Area Network) or it can cover a wide geographic region (WAMde Area Network

such as thénternet). Networks can be also classified according tortites of connection.

The telephone network connects two users for th@ewtiuration of the communication while
a packet switching network shares a communication link between maeyu(When the link

is free, it is allocated to the users).



2. Review of signals and systems

2.1 Basic definitions

When we want to transmit information, we have toc# usingsignals. Signals can

represent the atmospheric pressure variations gioke microphone in the case of speech
communication. This signal is further transformecn electrical signal. The microphone is
thetransducer that makes this transformation. Other type of aigican represent the light
intensity variation in a black and white picture, $/e are going to call aignal” a function
that carries information. This function can be gpiag between a continuous variable (time)
and a real or complex number.

X:tOR - x(t)OC (0.1)
Equation (0.1) can represent a signal like theesipesignal. A signal can also be

represented by a sequence of real or complex nismber

x:nOZ x(n)OC (0.2)
The above sequence can represent a signal genersitiela computer or a sequence of
samples from an analogue signal. A black and wiideire can be represented by a real
valued function of two variablesg,(y) that represent the position of thigel in the image. In
this course, we will consider essentially signdlthe type represented by (0.1). Some
important signals are:
The Heaviside unit step function:

0 t<O
ut) = % =0 0.3)
1 t>0
The rotating phasor:
@A) = Aexp(wpt +6) (0.4)

This signal can be represented graphically in tmepdex plane by the rotating arrow shown
in Figure 2- 1Ais the amplitude (modulus) of the phasay s the speed of rotation in
radians/s andis the initial phase (at= 0). The sine wave signal is its projection oa ttéal
axis of the phasor.

x(t) = Re[pt ) = Acodwt +6) (0.5)
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Figure 2- 1 Rotating phasor and sine wave in the aaplex plane
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Figure 2- 2 Sine wave in the time domain

The sine wave is also related to the phasor byolleving relation:

x(t) = 202 ’Lf © (0.6)
This is represented graphically by Figure 2- 3. Sigaal @ (t) is the complex conjugate of the
signal ¢t). It has the same amplitude, an opposite initi@lge and it rotates in the opposite
direction: we say that it has a negative frequency.
It is evident that three numbers are sufficientharacterize completely the phasor. They are:
wy, A and . We can represent this information graphicallgure 2- 4 represents the
"spectrum” of the phasogft) or the single sided spectrum of the sine wet)e
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Figure 2- 4 Spectrum of a phasor
The above representation becomes interesting wisggnal is the sum of many phasors.

x(t) = i A exp(at +6,) (0.7)

The signal represented by (0.7) Ihadifferent amplitude#\y andN different phasegi
located at the frequencies.
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Figure 2- 5 Two sided spectrum of the signad(t)

This representation of the signdl) presupposes that the amplitudgsand the phase& are
functions of the frequency In this case, for the signg(t) to be real, its amplitude spectrum
must be an even function of the frequency andhtsp spectrum must be an odd function of

the frequency. In other words, if the amplitude tesvalueA; at the frequencw= w, it
must have the same amplitude at the frequensy-cy and if the phase has the valie 8
at the frequencw= a, the phase ab= -« must be such th&#l=-6,. An example is the
spectrum of a sine wawgt) = Acos(at + 6) displayed in Figure 2- 6.
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Figure 2- 6 two sided spectrum of a sine wave

It shows that the sine wave is the sum of two ptsasbequal length rotating at the same
speed but in opposite direction and starting wighasite initial phases.



2.2 Some signal properties

Periodicity:
We say that the signa(t) is periodic if it satisfies the following propegrt
OtOR O >0 suchthat xt(+T Fx{(
The numbefT is called theperiod of the signal. It is evident thatTfis a period of the signal

thenkT (k ON") is also a period. For a periodic signal, theristean infinite set of positive

periods. The smallest one (we denofijtis called thdundamental period. The phasor
defined by equation (0.4) and the sine wave deflmedquation (0.5) are two examples of
periodic signals. Their fundamental period is:

T,=—=— (0.8)
a T
andfy is the fundamental frequency (measured in Helttim)dicates the number of turns per
second (cycles/s) of the rotating phasor.

Energy and power:

If the signalx(t) represents a current, then the instantaneousrgbatewill be dissipated by a
resistancd® will be p(t) = RE(t). In signal theory, we want a definition that vt
independent on the value Rf So, we define thstantaneous power of the signak(t) as:

p(t) =[x’ (0.9)
i.e. it represents the power dissipated byarésistance if the signal corresponds to either
current or voltage. We use the absolute value lsecthe signal might be complex. At that
time, theenergy that will be dissipated in the interval of tinte [;] is:

E[tt,] = j: p(t)dt = j:12|x(t)|2 dt (0.10)
So, the total energy of the signal is:
E= j_*:|x(t)|2dt (0.11)
Of course, the above integral must converge.divérges, then the signal will have an
infinite energy. We can also define the averagegrawthe interval{T/2, T/2] as:

LI I I I = YT
P[_E'E}_TE{ 2’2} TI-E|X(t)| “ 042

And the total average power (that will be calladgy power) is the limit whefl goes to
infinity of the above power.

10
pP= Jm? IZZ XV dt (0.13)

The convergence propertiesEBBndP impose a distinction or a classification of signdd E
is finite, thenP will be zero. The signal is classified as an epaignal. However, foP to be
different from zero, we must hateinfinite. In this case, the signal is classifiedaapower
signal.



Energy signall0<E<o;P=0.

Power signallE=c; 0<P<o.

Energy signals must decay to zera att[1. Any bounded finite time signal is then an energy
signal.

For example, consider the sigmé(t).

1

1
-><ts=
M) = 2

N

0 elsewhere
Its energy is of courde = 1. Consider now the following exponential signal
X(t) = Aexp(-at)ut) ; a>0
. o A2 T

Its energy isE = | A’exp(-2t)dt =—— exd- 2t) =—

ay isE = [, Aexp(-amtld = Cex-2t) =)
However, any periodic signal must be at least agsmignal. In the case of periodic signals,
the computation of the total average power is siineglif we use the periodicity. If we
decompose the integral ovElas a sum of integrals over the fundamental péfgpde obtain
the following formula:

j |x()[” ot (0.14)

0T,

The notationL means an integral over any interval of len@ghe.g. pr, a+Ty.

p=1
T

Using (02.14), the power of the phasorftsz A? and the power of the corresponding sine wave
is: P =A"2.

Time average

For power signals, we can define the time averdgleeosignal (It is the dc value of the
signal).

1l
<X(t)>= lim — j_; x(t) dt (0.15)

For periodic signals, (0.15) reduces to
_1
< x(t) >= T jTo x(t)dt (0.16)

Time average can be defined for energy signals.d¥ew the dc value of energy signals is
zero.

2.3 Fourier series

The theory of Fourier series basically states pleaibdic signals can be expressed as a linear
combination of phasors. We will see later that phei$orm an essential set of signals and
practically almost all signals of interest in conmroation are formed by such linear
combinations. Let us consider a periodic sigi@lwith fundamental period. If this signal
satisfies the following sufficient conditions:



Dirichlet conditions:

1. The signak(t) is bounded in the interval [Tg].
2. It has a finite number of discontinuities in théemval [0, Ty].

3. It has a finite number of extrema in the inten@ITj].
Then it can be developed in the following series:

x(t) = i c, exp( jnat) (0.17)

n=-c

where g, = 277f, = 2%.
0

We note that the Dirichlet conditions are suffi¢ciand not necessary. This means that we can
find functions that possess Fourier series witlsatisfying the above conditions. Even
though the Fourier series have been defined faogiersignals, the development (0.17) can
be applied to a finite time signal (i.e. a sigrmdttis zero outside an interval of lendy). In
this case, the finite time signal will be equahtperiodic signal with period, inside the
interval. In this course, we are not going to sttldyyconvergence of the series. Simply, we
can state its convergence at the discontinuitiegtppf
Consider a signa{(t) having a discontinuity dg [1 [0, To]. Let x(tp) = %o and

Iimt X(t) = x(t,.) ; tJi(rELt X(t) = x(t,.) then:

t-1p,t>t,

N
'\!im Z Cnexp(jn%t) :W
- +00 N
Relation (0.18) explains why we have defined thHee/af the step function at the origin as
u(0) = 1/2 and not 1 as it is usually defined imsilgand system courses. The computation of
the coefficients, is quite instructive:
Let us multiply both sides of equation (0.17) bp@jkat) and integrate overy.

To To [ +w
J'_ETO x(t) exp( - jkaat) dt =j$0{ >’ ¢, exp(jncq)t)} ex— jkapt) dt
] T

2 (n=-w

If the series converges, we can interchange tlegiiation and the summation.

(0.18)

T +% T +%0 T
J'_ETO x(t) exp(-jkept) dt = > cnf 2 exd jnayt) exg-jkagt)dt=>" cnf 2 ex()j (n—k)cq,t)dt
2 e e

The integral is not hard to evaluate and its védue

3 . _osin(n-k) __ .
J-_T;exp[J(n k)a)ot]dt—To—n(n_k) =T, sindn-k) (0.19)

Equation (0.19) defines the function sixjofvhich is plotted below.



AN
Val V

Figure 2- 7 The sinc function

This function has the following property:
OmOZ ; sinc(m)= 1f m= O0and sincih F Of m# |
Using the above property, we obtain:

TO +00
[2 x®exp(-jkat)dt= > T, sinca—k )= 6T,
2 n=-oo
and finally, the coefficients of the Fourier serége given by:

c = T_lo LO x(t) exp(~ jnaat) it (0.20)

If the signalx(t) is real, then all positive frequency phasors nimestompensated by a
negative frequency with same amplitude and oppg@sigse. In other words, we must have:

c,=C, (0.21)
or
| =lc.|
arg[c,| =~ ardc_,]

In this case, we can use these symmetries to othtaifollowing alternate expressions of the
Fourier series.

(0.22)

X(t) =c, + i 2|c,| cogneut + argc, ) (0.23)

By using the trigopnometric identitycos@+b )= cosa cob- sia sim, we obtain the
following result.

X(t) =c, + Y a,cosnat + > b, simawgt (0.24)
n=1 n=1

where

3, =[a o ard,)



b, =~c,|sin(ardc,]) (0.25)

In (0.23), the term correspondingrie- 1 is called the fundamental, the terms corregpan
ton >1 are called tha™ harmonics and of coursg is the average or dc value.

Symmetry properties

In the case of real signals, if the functi{t) is even, i.ex(t) = x(-t), then the series (0.24)
will not contain any sine terni, = O for alln. Alternatively, if the function is odd, i.e.

X(t) = —x(-t) then (0.24) will contain only sine terms, icg= 0 anda, = 0.

If the real signak(t) has a half wave symmetmy(t £ To/2) =—x(t), then its Fourier series will
contain only odd harmonics, ig =0 forn=0,+2, 4, ...

Example of Fourier series computation:

Consider the pulse train defined by(t) = Al (lj ; 0<r<T, for —T—2° <t sT—z" and
T
X(t) = x(t +T,) for all the other periods.
13 : 1 : 2
C,=—| % Aexp(—jnat )dt = —— exfd — jnat
T, J-_z ( ) Ty = JNaw, F( ) T

2

= Aisin e
TO TO

4T magnitude

0.04f-
o.024
rmonic
-9 -8 -7 6 5 -4 3 2 1 1 2 3 a 5 "6 ME 8 9

Figure 2- 8 Amplitude spectrum of the pulse train

. . 2 .
The above spectrum corresponds to harmonics loeatiedquenciesw, = n?n along with a
0

T
duty cycled = —.
y Cy T

If now 7=Ty/2 (square wave), we obtain,; =§sinc(22j . This means that =%sin%7,

giving



A n=0
2
C, = 0 neven
é—ﬁﬁ n=+1+3t5,.
T 3m 51

Grouping the terms corresponding to + amg we obtain the following series:

A 2A 1 1
X(t) =—+—| coswyt —= cogut+— cos@t—---
(t) > n( Stgt =5 cosgt+ d j

Parseval's relation:

Let us consider two signakét) andy(t), both periodic with period,. Their Fourier
development is:

X(t) = i X, exp( jat)

n=-oco

yt) = > v, exp( jat)

n=-co

Then

1 . _ +00

T 5 X0y Od=3 Xy, (0.26)
Proof:

{i X, exp( jnat) i A exp(—jnwot)}dt

n=-c m=—co

% J, X0y Oct== [

0T,
We interchange the integral with the sums.

Ti J. X0y ()t = ) Zm XY, {%L exp( | (n—m)%t)dt}

Nn=-0c0 M=—00

Using the properties of the sinc function, we fiypalbtain:

1 -
T jTO x(t)y @dt=>" XY,

n=-c

(q.e.d.)
Relation (0.26) can be applied for the cgde= x(t). We obtain

+00

P :%L0|x(t)|2dt =>'1%,° (0.27)

—00

In other words, (0.27) means that the total avepmyeer of the waveform(t) is the sum of
the powers of all the phasors constituti(.



