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The Fourier Transform.

Consider an energy signdl). Its energy isE = fm\x(t)\2 dt
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X(t)

Xq(t)
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Such signal is neither finite time nor periodic.iSfimeans that we
cannot define a "spectrum” for it using Fourieiesrin order to try to
define a spectrum, let us consider the followingquic signalx,(t):

X, (t) = x(t) for t inside an interval of widtii,. The signal repeats itself

outside of this interval. We can define a Fourenies for this signal.

Furthermore, it is evident that:
X(t) = lim x(t)

To—-o
We can write:

Xl('[) — +z°° Cnejn%t

=3 | 2] xe ™t e
n=-c To To
As the periodT, goes to infinity, the spacing between the spectral

lines decreases. This spacindd® = (n+1)w, —nNw, = w, = ?I_—ﬂ Since
0



this value becomes small, the successive valudwedfequencieaw,

can be replaced by the continuous variabléso, we can rewrite the

above expression as:

+00

X (t) = %T 5 [ J, x(t)e‘j“‘dt}ej“‘Aa)

So, when we go to the limify - o, the summation will become an

integral and the spacinfw will become a differentiablcw. So, we

obtain:
X(t) = %7 j[ [ x(t)e‘i‘“dt}ej‘ddw

The expression between brackets is called the &odinansform of

the signak(t). It is a function of the variable, so we can write:

X (@)= [ x(t)e “dt

1 e+ .
xt)=—| X(we“dw
= [ X@

The first expression is called the Forward Foufiesinsform or the
Analysis Formula. The second one expresses theals@s linear
combination of phasors. It is called the Inverseria Transform or
the Synthesis Formula. The phasors now have fregegthat belong
to a continuum of values. This is why the synthdsrsnula is now

given by an integral and not by a summation. Thiegrals are
computed over infinite intervals. This implies tat have to take into
account convergence conditions. Without going intdeep

mathematical derivation, we can affirm that onefisigint condition



for the existence of the Fourier transform is taet that the signal is
an energy signal.
In our course, we will find it easier to use theiablef rather than the

variablew Since,w= 27, we obtain the following pair:

X(1) =] x(t)e ™ dt

x(t)= [ X(f)e’>"df

The above relations are more interesting than tts¢ dnes. They
differ by only the sign of the exponent inside thiegral.
Symmetry relations:

The Fourier transfornx(f) :ff[x(t)] of the signalx(t) is in general a

complex function of the real variableWe can express it as:
X(f)=|X(f)e”", where the two function¥(f)| and ¢(f) have no
particular symmetry i(t) is complex. However, ik(t) is real, then

the Fourier transform will have the same type ahgyetry as the one

we have seen in the study of Fourier series (HamBymmetry).
So:X(f)=X"(-f). This means that:
[ X(f)|=|X(=f)| (Even function)
¢(f)=—-¢(-f) (Odd function)
Example: The rectangular pulse.

Consider the signad(t) = I1(t).
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i
We have:X(f) :Izle‘lz”“dt :ifsinﬂf = sincf
- T
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The Sinc function

Causal exponential pulse:
Ae™ t>0

X(t):{ 0 t<0

X(f)= Arw ehe g = N
0 b+ j2rrf

When the function is causal, the Fourier transfoan be seen as the

evaluation of the Laplace transform on the imagir{px) axis.

Properties of the Fourier transform:
1. Linearity: JF[ax,(t)+bxx(t)] = aF[x,(t)] + b [Xo(t)]




2. Duality: If x(t) andX(f) constitute a known transform pair, then
JIX®]=x(-H). For example: JS[MN(t)]=sind. Then

Ssinct] = N(f).

3. Time delay: ff[x(t -0 = x(f)e-iZH‘T

a

4. Scale changeff[x(at)]:ix(ij. So, compressing a signal
a

expands its spectrum and vice versa.

5. Frequency translationf | x(t)e"® |= X(f - f,)  a,=27f,

6. Modulation theorem:

F[x(t)cosapt] :%x (f - f, )+—;x (f+f,)

Example: The RF pulse: Considm@t):Aﬂ(tjcos%t. Using the

T
above relations, we obtain:

X (f) :%sinc(f —f )r+% sincf + f, ¥

(1)

AL
=

(a)
Z( )




7. Differentiation. [% x(t)} = j2mfX (f)

8. Convolution:

The convolution of two functions is defined as:

2(t) = x()* () = [ X(A) Xt - A dA. We obain:
F[x)* ()] = X(f)Y(f)

Example: Consider the triangular functit).

A) :{1—\t\ -1<t<1

0 elsewher
It is easy to show thdt(t) = M(t)*M(t)
So F[A(t)] =sinc f
9. Multiplication:

Fx®)y(t)] = X(f)*Y(f) :J‘j: X(AY(f -2)dA
10. The Rayleigh Energy theorem:

[ x)de= [T X ()] o

The Dirac | mpulse Function

The Dirac impulse function or unit impulse function simply the
delta functiondt) is not a function in the strict mathematical seris
is defined in advanced texts and courses using ths®ry of
distributions. In our course, we will suffice withe following much
simpler definition.

x(0) a<0<b
O otherwise

[ xattydt = {



wherex(t) is an ordinary function that is continuoug atO.

If x(t) = 1, the above expression implies:
[T oty = | attydt =1 for Dg > 0

We can interpret the above result by saying thatitfpulse function
has a unit area concentrated at the pom0. Furthermore, we can
deduce from the above thdt) = 0 fort # 0. This also means that the
delta function is an even function.
The defining integral can also be used to compbte fbllowing
integral:

Laomef} 3
The above is nothing but the definition of the stép function or the
Heaviside function. So, we obtain the followingatednship between

the two functions:
t
u(t) = [_3(A)dA

andd(t) = au(t)
dt

Properties of the delta function:

1. Replication:
X(t)* At -1) :I_:od(/] “DXt-AdA=xt-71)
2. Sifting:

[Tx®a(t-r)dt = x(7)



3. We can use the fact that the delta function is auethe above
integral to show thatf_m X(A)o(t —A)dA = x(t)

The above relation is a convolution.
4. Since the expressions containing the impulse fancthust be
integrated, the following properties can be eagdguced:
X(t)O(t —t,) = x(t,)I(t —t,)

and 5(at) = éé’(t) a#0

Fourier Transform of the impulse:
[Tamer M dt =1
Using the duality property, we deduce that:
S :f:e‘jz”“dt =o(f) even though the constant (dc) is a power

and not an energy signal. In fact, using the fregyetranslation

property, we can compute the Fourier transfornnefghasor:
Fle|=a(f -1,
This allows us to compute the Fourier transforrperiodic signals.

If x(t) is periodic with fundamental periot, we can develop it in

Fourier seriesx(t) = Z c e’¥™"  Using the above, we obtain:

Nn=-—o0

F[xp)]=F { ﬁ cnejz”“fot} = i c o(f —nf,)

n=-oo n=-—o0



Example:

Consider the following impulse train:

X(t) = Z o(t —nT,). This function is a repetition of the delta fucti

every Ty seconds. In the interv%l—lzo,lzo] we havex(t) = Jt) and it

Is periodic. Its Fourier series coefficients are:

To .

Cy :if : (e ™=

To°=3 Ty
This implies that the Fourier transform of the irgautrain is:

X(f) :Tiz o(f —nf,) = foz o(f —nf)
0 N=— n=-—o

From these relations, we can now relate Fourienstcams and
Fourier series. In order to do so, let us condidersignals(t) built by

a repetition of the signa(t).

s(t) = D x(t —KkT,) where the signak(t) has a finite duratiof,. In

k=—o0

other words,x(t) =0 for tO [-Ty/2, To/2]. Let X(f) be its Fourier
transform. Using the replication property of thdtaléunction, we can
write:

s(t) = x(t) Dio S5(t —KT,)

k=—o0

This means that

k=—o0

S(f):X(f)f{id(t—kTo)}: fOX(f)ia(f ~Kf,)



Using now the sampling property, we can re-exptiessbove as:
S(f) =1, Z X (kfg)o(f —kfo)
k=—c0

Example: Fourier transform of a periodic train eftangular pulses.

t—KT,
4

Here, s(t) = A)_ FI(
k=-00

)where r<Ty. In our case, the function
X(t) is: x(t) = Al'lej with a Fourier transfornX(f) = Arsinc( f7).

So: S(f) = Afyr S sinc(nf,r) 3 (f —nf,)

n=—co

So, we have found an alternate way to compute dbéficients of the
Fourier series of a periodic waveform. In the ab@ample, the
coefficientsc, of the development are:

¢, = Af,rsinc(nf,7) = Ad sindnd)
whered is the duty cycled = f,r :TL.

0
Fourier transform of the unit step function and of the signum
function:
The signum function sgt)(is a function that is related to the unit step
function. It is defined as:

1 t>0

sgng)=< 0 t=(
-1 t<0

10



It is evident thatu(t) = Y2sgn() + 2. The signum function has zero net

area. It can be seen also that $gig the limit of the following

function:
e™ t>0
z(t)=4 0 t=0
- t<0
o _ —j47Tf
b > 0. We havef [z(t)] = >. So,
b* +(27f)

S [sgnt )] = limz (f):_i. And from the relation between the
b0 jrrf

signum and the unit step function, we get:

o 1
T uO1= 55,

1
+—-0(f).
So()
' Y Tags] -1
By duality, we also obtain *[sgn(f ) =
J
The unit step function transform allows us to cotapthe Fourier

transform of the integral of a signal.
[ x(AydA = [ x(A)u(t - )dA = x(t) Du(o).

X(f), 1

jomf 2

So,.F [ [ x(/l)d/l} - X (0)5(f )

Signals can be classified according to their speéaiccupancy. A
lowpass (or baseband) signal is a signal with lmgimponents at low
frequencies and small components at high frequen€a the other
hand, if the spectrum is significantly differenbiin zero only in a

band of frequencies all different from zero, thgnsil is call bandpass.

11



The width of this band is called the bandwidthtHé ratio of the
bandwidth to the value of the center of the banshsll, the signal is

said to be a narrow bandpass signal.

Bandlimited Signals and the Sampling Theorem

A signal x(t) with Fourier transforn¥X(f) is said to be bandlimited if
X(f) = 0 for f| >W. The frequencyV is the bandwidth of the signal.
Bandlimited signals have the property to be uniguepresented by a
sequence of their values obtained by uniformly damgphe signal.

So, to a signak(t), we can associate a sequerg®) = x(nTy). Ts is
called the sampling period. Its inveifsés the sampling frequency.
The Sampling Theorem:

Given a bandlimitedsignal x(t) with spectrum X(f) = O for |f| > W.
The signal can be recovered from its samples x(nTs) taken at a rate
fs= UTswith fs =2W.

X(t) = i x(nTs)sinc(t _T”Tsj

n=-—o S

Proof:
We have seen thaft)o(t —nT,) = x(nT,)o(t —nT,). So, if we multiply

the signal by the impulse traiE o(t —nT,), we obtain the sequence

Nn=-—oo

of values xi(n) =x(nTy). Let us call the obtained signa(t).

X (t) = x(t) x i o(t—nT,) = i X(nT,)o(t—-nT,) . The Fourier

n=-—o0 Nn=-—o0

transform of this signal is obtained by the follogyiconvolution:

12



Xs(f):X(f)Dj[i 5(t—nTS)}:X(f)D{fsi5(f —nfs)}

n=-—o00 n=-c0

Using the replication property of the delta funaotiowe obtain

immediately: X (f) = f, Z X(f —nf,). We see that the spectrum of

n=-co

the signakg(t) is a repetition of the spectrum of the sig«(@&.

T X()
W W £
[

The above figures show the relationship betweermtspelt is clear

that if /2 >W, The spectrum of(t) and the one af(t) will coincide

13



for the range of frequencies betweelg2 andf/2 (within the scale
factor fy). This means that we can recowdt) by computing the

inverse Fourier transform of the spectruXyf) multiplied by a

“rectangular" filter with a transfer functidn (fij So, we have:

S

gl 1 f
X(t) =S L—st(f)nif—ﬂ

S

The result is finally (show it):

X(t) = i x(nTS)sincEt _TnTS]

n=-—oo S

(q.e.d)
In the above proof, we had to have 2W. If this does not occur, we

have the phenomenon of aliasing. Aliasing is aodisin that cannot
be cured (in general). It is due to the superpmsivf the different
shifted spectra. We can observe aliasing when wk&hvavestern
movies. The wagon wheels seem to rotate in revétss.is due to the
sampling rate (number of images/second) whichasstoall.

So, sampling is the process of generating a segu@tiscrete time
signal) from a continuous time one. The obtainegusace can be
analyzed in the frequency domain. Let us consig@r) = x(nTy). Its
Fourier transform is defined to be:

X,(@) =3 x(ne ™

Nn=—c0

We can remark that this spectrum is periodic (ie frequency

domain), with a period equal toz2In the definition of the spectrum of

14



a sequence, we can also observe that the freqsemc® now
measured in radians and not in radians per secandoml the
continuous time signal. This is due to the fact,thrma sequence, the
"time" variable n is an integer indicating just the position of the
sample and not the time position measured in sexoYidu should
consult the lab manual in order to have the cooedpnce between
the spectrum of the sequence and the one of thmalisignal.

If the sequence exists for a finite time, i.e.fbsamples, then the sum

Is finite.
N-1 N
Xy (@) = x(me ™
n=0
We can also compute the spectrum of the sequenee a\finite

number of discrete frequencieg = % k=0,--,N-1.

N-1 N N-1 —jz—”nk
X,(K) = X,() = > xy(n)e ™ =3 x,(n)e "
n=0 n=0

The above relation defines the Discrete Fourien3i@am (DFT).
This transform can be computed very efficientlyngsan algorithm
called the Fast Fourier Transform (FFT).

Linear Time lnvariant Systems

Signals are processed by systems. By the wordmayste understand
a mapping from a signal set (input signals) to haeotsighal set

(output signals).

15



System R
() T ")

The above figure shows graphically the relationshat exists
between the input signal and the output one. In rtia@ping, we
understand that the whole signdt) is transformed into the whole
signal y(t). You can encounter the notatiog(t) =H[x(t)]. This
notation can be misleading. It can also mean thatuvalue of the
signaly at the timet is functionally related to only the value of the
signal x att. When we want to indicate the functional relatltps

between values, we will use the following notation:

y(t) =H[t,x(A),A0[t,t,] ]
This means that the value of the output the timet depends on all
the values of the input signal at timébetweent,; andt, and also on

the state of the systemtat

M emoriless system:

If y(t,) = H[x(t,)], i.e. the output at timg depends only on the input

at the same timg, the system is said to be memoriless.

Causal and anticausal system:

If y(t) =H[x(1),A <t], i.e. if the output depends only on the past and

on the present (but not on the future), the syssesaid to be causal.

If y(t) =H[x(4),4>t], i.e. the system output depends only on the

future, the system is called anticausal.

16



Stable system:

If a bounded input|(t) < M, Ot) produces a bounded output, we say

that the system is BIBO stable.

Linear system:

A system is linear if it satisfies the conditionsofperposition:

If yy(t) is the output corresponding tq(t) and y,(t) is the output
corresponding to Xy(t), then ayy (t)+ayy,(t) corresponds to
arXa(t) +azxo(t).

Time lnvariant system:

A system is time invariant if it is not affected hyshift of the time
origin. In other words, its properties remain theng as time goes by.
One consequence is that{t) producesy/(t), thenx(t—7) will produce
y(t-17).

Many systems of interest are linear and time irardr(LTI). Among
such systems, we find most of the filters useddlea signals in
communication systems.

Linear Timelnvariant systems:

LTI systems are systems that can be completelyritbescby a single
function: the Impulse Response.

If the input of an LTI system is a Dirac impulsbetcorresponding
output is a functiom(t). We have seen that an sigr@) can be seen a

linear combination of shifted delta functions.

[Tx(a(t-2)dA = x(t)

17



So, since the system is time invariant, then thgpuducorresponding
to JAt-A) is h(t-1). The system is also linear, so the output
corresponding tox(A)At-A) is x(A)h(t-A). Finally, the output
corresponding ta(t) is the sum of such values:

y(t) = [ X(A)h(t - A)dA

The above relation is a convolution. It is easystow that the
convolution is a commutative operation. This metdwas we can write

also:
y(t) = [ h(A)x(t-A)dA

The functionh(t) is the impulse response. It describes completedy
LTI system and allows us the compute the outpuafyr given input.
We can test the stability of the system by testisgmpulse response.

A necessary and sufficient condition for a systerbd BIBO stable is
[ It dt <o

The above condition also implies that the Foumangform of a BIBO

stable system exists. It is called the transfection H(f) = ﬁh(t)]. If

the input and output signals possess Fourier toamsf, we can write:
Y(f)=H(f)X(f)

Causality also imposes restrictionsidt). If the system is causal, the

output from the convolution integral should not eleg on values of

the input at timesA coming after the timda. This implies that

h(t-A) =0 for A >t. So, we see that in order to have causality, we

18



must haveh(t) =0 fort < 0. So, when a system is causal, the input

output relation becomes:
y(t) = jt x(A)h(t = A)dA = jo“” h(A)x(t - A)dA

Response of an L Tl system to a phasor and to a sinewave:

Let the input of the LTI system be the phage’“*?. The output

will be:

y(t) = [ h(A) A/ Id ) = A [ h(h)e I d )
Replacingw, =2mf,, we recognize the Fourier transform of the
Impulse response, the transfer functit(fy). So

y(t) = H(f,)Ae/“@*?

If we introduce the modulusi(fy)| and argumeng(fy) of the transfer
function:

y(t) =|H (f,)|e? Agl @)
From the above result, we can conclude two impoftats.
1%) the response of a phasor of frequefigyis also a phasor. The
output phasor is proportional to the input one. Tdmnstant of
proportionality is the transfer function. Sincelarl system is a linear
operator, we can say that the phasors are thenfeigetions" of LTI
systems while the transfer function is the "eigdme’a
2"% the output phasor is equal to the input phasatescby the
modulus of the transfer function and phase shifteds argument.

Now, if the input is a sinewavdt) = Acos(pt + ), we can write:

A o A e
X(t) :Ee“%t 9 +Ee He9+9) the output becomes:

19



V() = H (1) S e + H(=f,) e giving

Y(t)=\H(f0)\ej¢(f°)§ej(“’°“‘9)+\H(—fo)\em(‘f")ge“%“g) . If the

impulse response is real, thad(fh)| = H(-fo)| and @(fo) =—@(—fo).

This implies:

y(t) = AlH( fo)‘|: % ol (@te+p(fo) _;e_j(w()t+9+¢(fo)):|

y(t) = AH (f,)|codat +8+¢ (f,)
The output is a sinewave at the same frequencyedsday the
modulus of the transfer function and phase shifiethe argument of
the transfer function at that frequency.

Example: Consider the following RC circuit:

The transfer function is equal to: (this is a sienpbltage divider)

1
_j2mfc  _ 1 1
H(f)= = =
s 1 1+jorfRC 4 f
j2mrfC f,

wheref, = 5 1 is the 3dB cut-off frequency. Assume we input a

sinewave at the frequendy, x(t) = Acog 2rf.t).

20



1 /2
Nl

y(t) = —co{ 27f t - j

When the LTI system is used to modify the spectaira signal, it is

H(f) =

andg(f,)=-tan 1-—4 So:

called a filter. We can classify filters accorditm their amplitude
response. Lati(f) be the transfer function.

If [H(f)| DO for f| >W, the filter is called Lowpass.

If |[H(f)| DO for f| <W, the filter is called Highpass.

If [H(f)] 0O for O <{| <f, and {| >f,, the filter is called Bandpass.

If [H(f)| = constant for all frequencies, the filter isAllpass filter.

Bandpass Signals:

Bandpass signals form an important class of sigidiis is due to the
fact that practically all methods for transportimgformation use
modulation systems that transform the basebandrnvation into
bandpass signals. In this section, we are concextadreal bandpass
signals. Letx(t) O R be a bandpass signal. Due to the Hermitian
symmetry K(f) = X (-f)), the information in the positive frequency is
enough to characterize completely the signal. Alvaadpass signal is
characterized by:

X(f)=0for0<|f|<f and|f|>f, (f, <f,).
The bandwidth of the bandpass signal is definedbasg the

differenceB =1, — f,. If B <<fy, the signal is a narrow bandpass signal.

21



Bandpass signals are completely described by fbair frequency
envelop.
In order to describe quite simply bandpass signais, have to

introduce some mathematical tools.

TheHilbert Transform

In this section of the course, we are going toouhice a tool that

allows us to transform a real signal, with a twaesi spectrum, into a
complex signal with the same spectrum, but only fmsitive
frequencies.

To begin, consider the real sinewax@) = cosd and the phasor

X+(t) = exp(at) = cosud + jsinat. The respective spectra are:
X(f) :%5(f - f0)+%5(f +f,)and X, () =3(f - f,).

We can remark that the spectrum of the phasoreisime (within a
scale factor of 2) as the one of the sinewave for positive
frequencies while it is zero for negative frequesciFurthermore, the
phasor is equal to the sum of the sinewave angahee signal phase
shifted by 90°. We can generalize this relationsbipnost signals.

In order to phase shift signals by 90°, we intradadransform called

the Hilbert Transform.

The Hilbert transform of a signa(t) is the signaﬁ(t) equal to the
original signal with all frequencies phase shifteg 90°. The

operation of shifting the phase of a signal by astant value is a

linear time invariant operation. This means that Ehgna&(t) IS

22



obtained fromx(t) by a filtering operation. In fact, the filter &n

allpass one. This means that:

X(t)=ht)*xt) or X(f)=H(f)X(f) where |[H(f)|=1 and

f>0
arglH (f )] =1
f <0

T
2
m
[ 2
So, we can writeH (f)=e ‘2" =—jsgnf.

We have already computed the Fourier transform haf signum

function. Using the duality property, we obtain:
1
h(t) =—
(t) P

giving

In general it is easier to compute the Hilbert $farm in the

frequency domain since it amounts to shifting tiegjiencies by 90°.
cosut = sinat, sinat = —cosat.

If we apply the Hilbert transform to a signAe(t) that is itself the
Hilbert transform of a signat(t), we phase shifk(t) by 180°. This

means that we simply invert the signal.
X(t) = -x(t)
The above relation provides the inversion formula:

X(t) = _1 *“Md,}
m=t-A

23



The following property is important in the analysi$é bandpass

signals.

Theorem:

Given a baseband signglt) with X(f) = 0 for f|=W and a highpass
signal y(t) with Y(f) =0 for f| <W (non-overlapping spectra), then
XOY(D) = XOY().

Example: if y(t) =x(t)cosapt with X(f)=0 for f|=aw, then

y(t) = x(t)sinat.

The analytic signal

using the analogy of the sinusoid and the phaser,can define a
signal having a spectrum that exists only for pesifrequencies. It is
the analytic signal associated wxh):

X, (t) = x(t) + jX(t)
We obtain, in the frequency domain:

X, (f) = X(f)+ jX(f) = X(f)[1+sgnf]

2X(f) >0
S0, X, (f)=< X(0) =0
0 f<O

We can also define another analytic signal, but #xasts only for

negative frequencies.
X_(t) = x(t) = jX(t)

24



2X(f) f<O
X_(f)=9 X(0) f=0
0 f>0

We can remark that(t) =Re[x, ¢)]= Rdx_{]. So, it is simple to

extract the original signal from the analytic o¥Me have also

+ — I 4 gT
X0 > x () which is analogous toosat :%

Using analytic signals, we can now give importanbperties of

X(t) =

bandpass signals.

Consider a real bandpass signgk), such that X(f)=0 for
0<|f|< f, and|f|> f, (f, < f,), and consider a frequentybetween
f, andf,, i.e. f; < fy < f,, then we can express the signal as:
X(t) = a(t)cosapt — b £ ) sincupt
where a(t) and Db(t) are baseband signals bandlimited to

max f, - f,,f,—f,] . The above representation is called the

quadrature representation. We can also represesighal as

X(t) =r(t)cos(wpt +¢ ¢ )
wherer(t) and ¢(t) are also baseband signals. This representation is
called a modulus (amplitude) and phase (argumeptesentation.
Proof:
Consider the analytic signal associated w(th x.(t) = x(t) +j§<(t). Its
spectrum iX,(f) = 2X(f) for positive frequencies and zero for negative
ones, i.eX.(f) = 2X(Hu(f). If we shift its spectrum down to dc thy

we obtain a bandlimited signal
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m,(t) = x, (t)e”
M (f)=X,(f+f)=2X(f + fu(f +f,)
This signal is baseband and is in fact bandlimit¢ol
max f, - f,,f,— f,] . Its spectrum has no particular symmetry (in
general). So, the signal is complex. This meaniswieecan write:
m, (t) = a(t) + jb(t)where the two signals are real and have the same
bandwidth asn(t). The signaim(t) is called the complex envelop of
X(t). We can recover the signdt) by shifting it back td.
X, (t) = m, (t)e"
X(t)=Rel m,_ ()" |= Rd(a ()} jb()( cost+] simt)]
=a(t)coswt —b ¢ ) sinuyt
We can also express the complex envelop in moduidsphase:
m,(t) =r (t)e”? giving: x(t) =r(t)codwt +¢ ¢ ) along with

 b(t)
a(t)

a(t)=r(t)cost b €)=r ¢)sinut

r(t) =/a%(t) +b2(t) . 4(t) = tarr

(g.e.d.)
In a bandpass signal, the information is contaimedhe complex

envelop. In many cases, it is easier to processrikielop of the signal

instead of processing directly the bandpass signal.
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Filtering a bandpass signal:

Consider a real narrow bandpass sig«8l having a bandwidtiw
centered around a frequenfy and consider a real bandpass filter
(with impulse responseh(t))with a bandwidth B that covers
completely the signat(t). The transfer functioi(f) is of course the
Fourier transform ofi(t).
We define the equivalent lowpass filtBg(t) as the lowpass filter
having as transfer functioH,,(f) the positive frequency half d(f)
translated down to zero by,. So:

H,(f)=H(f + f)u(f +f))
If we call x(t) the input of the bandpass filter ayd) the output, we
have:
y(t) =h(t) Ox(t) or Y(f)=H(f)X(f) . Introducing the complex
envelops:
X, (t) =m(t)e’* andy, (t) =m,(t)e"¥. In the frequency domain, this
becomesX, (f) =M, (f —f))andY,(f)=M (f -f)).
SinceY(f)=H(f)X(f), thenY (f)=H(f)X, (f). This implies
thatM (f = f,) =H(f)M,(f - f;), this relation is valid for positive
frequencies, so we can write, without affecting phevious relation:
M, (f = fu(f)=H(F)M (f - f)u(f). If we make the change of
variablef' =f - f,, we obtain:
M, (Fu(f'+ f)=H(f+ fu(f+ f )M (f)or

M, () =H,(T)M,(f)
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So, bandpass filtering a bandpass signal amourltsmoass filtering
its complex envelop by the equivalent lowpassrfilte
Example:

Consider the following parallel RLC circuit:

O ¢ ¢
Wy L
é VLC
R T¢ L 0. =weRC>10 -
O . ®
The impedance of the circuit is:
1 R 1
Z(w) = = where o =— ;
+jCCU+_1 1+JQT0J2_C%2 VvLC
R JLw W),
Q; =RCw.
If Qr > 10, this impedance can be approximated quitsetydoy:
Z(w) = R , w>0, a:iand it is essentially different
1+ %~ 2RC
: a

from zero only in the vicinity otw.
If the input is the current flowing through theatiit and the output is

the voltage, we have a narrow bandpass filterthheturrenk(t) be:

28



X(t) = Acosw.t cosyt with w <<, . The signal is already in
quadrature form witha(t) = Acosaw.t, b(t) =0. So, the complex
envelop ism (t) = Acosw,t. The equivalent lowpass filter has is:
_R
. 27Tt

1+ ) ——
a

Z,(f)= so the complex envelop of the output is the

sinewavemy(t) filtered byZ(f). So,
rﬂy(t) = ‘le( fm)‘ ACOS(CUmt + Arg[zlp (fm )])

So, m,(t) = AR _ co{wmt - taﬁl(zmm D
e ”

a

And finally
y(t) =Re[ m, ¢ ' | = AR co{wmt - taﬁl( 27Ty D casit

T 2 a
a

Group delay and phase delay:

Consider a very narrow bandpass signal centeredfaguency, and
having a bandwidthV (W << fgy). This signal is to be filtered by a filter
having a transfer functioH(f). The signal is:

x(t) =r(t)codawt+6 ¢)
Because of the narrowness of the bandwidth of ipeak we can
make the following approximations for the trangterction:

H(f)=A(f)exp j¢ (f) and aroundf,, we can assume that the

amplitude response is constant, and that the plesgmnse can be

approximated by its first order Taylor series.
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A(f)=A andg(f)=¢,+k(f - f,) forf aroundf,. kz% :
f=f,

The complex envelop of the signal is;(t) =r(t)exp[ j& ¢)] and the
equivalent lowpass filter transfer function is:

H, (f) =H(f + fu(f + f) = Ajexpl j(d,+K ).
So, the complex envelop of the output is given by:

— j (@ +kf _ ido i . )
M, (f) =A% IM (f)=Ae”*M, (f)e" . Using the time delay
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y(t) = Re{'%ej Pom, (t +%Tj ej“’ot} = Re{ﬂbej%r (t + %j ejg(”zﬂjei%t}

So, we obtain:

theorem:m, (t) = Abe”’f’mx(t +Lj Finally, the output of the filter is:

y(t) = Ar (t + %Tj co{wot + H(t +2Lj + ¢o} . Introducing the

7T

"phase delay'r, :—M and the "group delayr :—S—Z‘ , we
w=ah

h
finally get:
y(t) = Ar (t-7,)cod e, ¢ -7, )+6(t-7,) |
We can remark that the carrier and the complex lepvare not

delayed by the same amount (unless the phase sp®ra linear

function of the frequency).
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