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Communication circuits 

 

 

 

Introduction 

 

 This course is about electronic circuits applied to communication. We will 

deal essentially with C.W. communication. In C.W. communication, we need to 

produce carriers, amplify band pass signals, and multiply either a band pass signal 

with a carrier or a baseband signal with a carrier. We will also consider raising 

the level of a signal in order to either demodulate it or to transmit it. We see that 

most of the signal processing needs some non linear processors. So, the different 

electronic devices that we will consider in this course are going to be studied as 

large signal amplifiers and their behavior will be essentially non linear. 

 In order to obtain analytically tractable models for the different electronic 

components, we will assume that they are memoriless. This means that the type of 

analysis that we will perform in this course is valid at frequencies below the 

different cut-off frequencies. So, the models will be static and not dynamic. 

 We assume that the student has a basic knowledge of network analysis and 

basic electronic devices (diodes, transistors and operational amplifiers). However, 

we are going to provide a small review of that basic knowledge in the first chapter 

of the course. 
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Chapter 1 

 

Review of Electronic Devices 

 

1.1 Some Generalities about networks. 

 

 The electronic devices that we are going to analyze are essentially non 

linear active devices. So, we start by defining the notions of linearity and activity 

in networks. 

Linear Network: A network is linear if superposition applies. 

Active Network: 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the above N port network. The average power dissipated by the 

network is: 

1 1 2 2 N NP v i v i v i     

If 0P  , the network dissipates power and should be considered as passive. 

If 0P  , the network provides power to some circuits connected to its ports (it is 

amplifying power), and at that time the network is active. If 0P  , then we say 

that the network is lossless. Networks built with pure inductors, capacitors and 

transformers are lossless. In the above representation of the network, we should 

not include the power supplies as input ports because in that case, all networks 
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will be passive. This is due to the fact that amplifiers (active devices) transfer 

power from the power supply to the output port. A device like a diode is a 

nonlinear one port device, but it is passive. A voltage source will be an active one 

port device according to the above definition. 

 

1.2 The Diode Model: 

 

 The diode is built using a junction of P and N doped semi-conductors. If we 

apply a voltage across the junction, a current is going to flow though the junction 

and is composed of two different types of carriers: The majority carriers which 

compose the diffusion current and the minority carriers that compose the 

saturation current. 

 

 

 

 

 

 

The diode equation is thus:  exp d
d s s

qv
i I I

kT
   where the first term is the 

diffusion current which depends mostly on the applied voltage dv  while the 

saturation current sI is independent on the applied voltage (as long as dv is 

smaller than the avalanche or Zener voltage). The different constants are: q: the 

electron charge = 1.6 10
-19

 C, k: Boltzman's constant = 1.38 10
-23

 J/°K and T: the 

temperature in °K. At ambient temperature (T = 300°K), the constant 
kT

q
has the 

value of 26 mV. 

At this point, we should indicate that the electrical field in a reverse biased 

junction (inside the "depletion region") accelerates the minority carriers. 

The following figure shows the forward characteristic of a diode for currents that 

do not exceed 10 mA. 

di  

dv  
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Fig. 1-1   I-V characteristic of a Diode 

 

The above figure shows clearly that as long as the voltage is smaller than a 

threshold V0, the current is essentially zero, and that above threshold the current 

is not limited at all. So, a good approximation of the diode is a voltage controlled 

switch called the "ideal diode" followed by a battery. 
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So, finally, a quite simple model (and at the same time fairly accurate) is the 

following one. 

 

 

 

 

The threshold value will depend on the technology and the type of semi-

conductor used. Typical values for V0 valid for currents between 0.1 to 10 mA 

are: 0.2 V for Ge, 0.7 V for Si, around 1 V for leds (GaAs, etc) and about 0.4 V 

for Schottky diodes. Depending on the problem at hand, we will use one of the 

different models seen above. 

 The exponential model will be used to model the Bipolar Junction 

transistor (BJT). 

 

1.3 The Bipolar Junction Transistor: 

  

 Consider a piece of silicon with three areas that will form two PN 

junctions.

 

 

 Let the base-emitter (BE) junction be forward biased and the collector-base 

(CB) junction be reverse biased. At that time, a majority carrier injected at the 

Ideal           V0 

Emitter 

Base 

Collector 

P P N 
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emitter (a hole going from emitter to base or an electron going from base to 

emitter) is going to find itself inside the depletion region of the reverse biased 

collector base junction. From our previous discussion, we know that a minority 

carrier is accelerated by the electrical field inside a reverse biased junction. A 

majority carrier for the BE junction is a minority one for the CB junction. So, 

most of the carriers injected in the BE junction will pass to the CB junction. In 

other words, practically all of the emitter current will pass to the collector. 

 

 


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Fig.1-2 PNP transistor in normal operation 

 

 We can write 0C F EN CI I I  , where F is a number that is close to one, 

IEN is the current in the forward biased BE junction and IC0 is the saturation 

current of the reverse biased CB junction. The collector current will depend only 

on the injected emitter current and not on the applied voltage between the 

collector and the base. 
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Fig.1-3 Output characteristic for the BJT 

 

 

The above set of curves shows that the output I-V characteristic of a bipolar 

junction transistor is just a set of translated diode characteristic.  

 A more complete model can be obtained if we consider also a reverse 

transistor (CB forward biased and BE reverse biased). At that time, we can 

superpose the two transistors and we obtain the "Ebers-Moll" model. 

 


F
I
EN

V
C

B

E

B

C

V
E

B


R
I
CR

I
EN I

CR

I
E

I
C

 
Fig.1-4 The Ebers-Moll model for NPN BJT 
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The Ebers-Moll model can be summarized by the following set of equations: 

 

E EN R CR

C F EN CR

E C B

I I I

I I I

I I I





 

 

 

 

And 

0

0

( 1)

( 1)

BE

BC

qV

kT
EN E

qV

kT
CR C

I I e

I I e

 

 

 

The two saturation currents and the two gains are related via: 

0 0F E R CI I   

 

 The above model is most useful in the analysis of common base circuits. 

However, most of the circuits will use the BJT in common emitter. If we solve the 

above equations, we can obtain the following relationship: 

CE

CE

qV

kT F

C R
FE qV

B
kT FE

FC

e
I

h
I h

e
h









 

Where: 

1

1

F
FE

F

R
FC

R

h

h















 

We see the usual relationship between the collector current and the base current 

for large VCE, C BI I , FEh  , but for small values of VCE, we can remark 

that the output characteristic does not pass by the origin, but all the curves start 

from a voltage VCEsat given by: 

ln F
CEsat

R

kT
V

q




  
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Fig.1-5 IC-VCE characteristic for several values of IB 

 

 

 The above relationship does not take into account the "Early effect" which 

implies a finite output impedance (inversely dependent on the collector current). 

If we consider the two diodes (BE and CB), we can define four modes of 

operation of the BJT. 

BE forward biased, CB reverse biased: Normal operation. 

BE reverse biased, CB forward biased: reverse transistor operation. 

BE reverse biased, CB reverse biased: transistor is in cut-off mode. 

BE forward biased, CB forward biased: transistor is saturated. 

In order to use properly a BJT, we have to bias it correctly, i.e. make sure 

that under all conditions, the BE junction remains forward biased and the CB 

junction remains reverse biased. Usually, we select a given "Quiescent" point 

(Q point), which means a voltage VCEQ and a current ICQ in the above set of 

curves (Fig. 5) and we use resistors and power supplies in order to achieve the 

required Q point. 

IC 

VCE VCEsat 
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Biasing a BJT 

 We assume given a Q point VCEQ, ICQ. The simplest biasing network is the 

following two supply network: 

 

T1

V
BB

V
CC

R
B

R
C

 

 

Fig.1-6 Dual supply Biasing 

 

 Since we assume that the transistor is correctly biased, the equation 

governing the BE junction simplifies to : 

BEqv

kT
E ESi I e  

And the Q point is achieved via: 

ln

BB B BQ BEQ

CQ BQ

CQ
EQ

EQ
BEQ

ES

CEQ CC C CQ

V R I V

I I

I
I

IkT
V

q I

V V R I





 







 

 

The above set of equations is a transcendental set and can be solved by successive 

approximation. However, we make a very small error by assuming that 
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VBEQ = 650 mV for discrete silicon BJT. Typical values of IES are about 2 10
-16

 A 

for integrated silicon transistor, 2 10
-14

 A for a discrete silicon transistor and about 

2 10
-7

 A for a germanium transistor. Solving for VBEQ for emitter currents between 

0.1 mA and 10 mA produce a BE voltage that remains around 650 mV for a 

discrete Si transistor, 750 mV for an integrated one and 220 mV for a Ge 

transistor. 

 Since the two batteries have the same polarity, we can simplify the circuit 

and use a single power supply. At that time the circuit becomes: 

T1

R
B R

C

V
CC

 
 

Fig.1-7 Single battery biasing 

 

 

 We can apply the same set of equations as for the previous circuit by 

replacing VBB by VCC. 

 

Example 1: 

Consider the circuit of Fig.7 with a transistor having IES=2 10
-14

 A, RB = 1 MΩ, 

RC = 5 kΩ, β = 120, VCC = 10V. Compute ICQ and VCEQ. 

With β = 120, we obtain α = 0.9917. We have to compute ICQ. We start the 

iteration by assuming a value of VBEQ = 650 mV. This provides the following 

values for the different currents: 
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IBQ= 9.35 μA, ICQ=1.1 mA and IEQ=1.1 mA, replacing in ln
EQ

BEQ
ES

IkT
V

q I
 , we 

obtain VBEQ = 643.7 mV. Another iteration will produce the same values. So, we 

can say that ICQ = 1.1 mA and this provides VCEQ = VCC-RCICQ = 4.39 V. 

 

Example 2: 

Consider the same circuit with a transistor having 50 300  . We want 

to bias it around the Q point ICQ = 1 mA and VCEQ = 5 V. Because of the wide 

spread of the different values of β, we are going to use the geometric mean of 300 

and 50. So 50 300    = 122. This provides IBQ = 8.2 μA and RB = 1.14 MΩ. 

RC = 5 kΩ. 

If we use these resistors with a transistor having an actual β = 50, the 

collector current will reduce to: ICQ = 0.4 mA. And this will imply a collector 

voltage VCEQ = 8 V. So, if the output ac voltage exceeds 2 V peak, we will have 

distortion by cut-off. 

If the true β = 300, then ICQ = βIBQ = 2.4 mA and this collector current will 

produce a drop of voltage of 12 V across RC, which is evidently impossible. This 

simply means that the transistor will be saturated at its Q point and VCEQ = VCEsat 

while ICQ will be given by CC CEsat
CQ

C

V V
I

R


 . 

 

Example 2 shows clearly that the above method of biasing is too dependent 

on the value of β, and for most transistors, the fabricant can only guarantee that β 

is within a wide spread of values. So, instead of trying to impose the base current, 

a better method will consist of imposing the emitter current, since the relation 

between emitter and collector current is via α which is always very close to one. 

The next circuit that we will study will impose the emitter current via a 

negative power supply. 
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Fig.1-8 biasing using a negative supply 

 

For the above circuit, the ac source is directly coupled to the base. From the 

dc point of view, the base is directly connected to ground. So, the capacitor CE 

will charge to VDCQ = VEBQ (we assume that Vin = 0 V, if Vin  0, then due to the 

non linearity of the base-emitter junction, the voltage across the capacitor will 

depend on the ac voltage also). We can compute the quiescent emitter current: 

EE DCQ
EQ

E

CQ EQ

CEQ CC C CQ

V V
I

R

I I

V V R I








 

 

 

It is evident that changing the transistor will not affect (significantly) the Q 

point and if VEE>>VDCQ, then the emitter current can be set with a very high 

precision. The capacitor CE is a by-pass capacitor. Its impedance should be 

smaller than the impedance in parallel at the lowest frequency. The impedance in 

parallel with CE is the parallel combination of RE and the dynamic resistance 

E EQ

BE
e

E EQi I

dv kT
r

di qI


  which is usually much smaller. 

If we cannot use a negative power supply, we can use the same circuit if we 

raise the dc voltage level of base. We can use a voltage divider to do so. 
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Fig.1-9 single supply resistive biasing 

 

The Thevenin equivalent circuit of the base emitter circuit is 

 

R
EV

BB

R
B

T1

C
E

 

 

Fig.1-10 Base emitter equivalent circuit 

Where:  

2

1 2

1 2

1 2

BB CC

B

R
V V

R R

R R
R

R R







 

Using the circuit of Fig.1-10, we obtain the following equations: 
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(1 )

BB B BQ BEQ E EQ

BQ EQ

V R I V R I

I I

  

 
 

This provides: 

(1 )

ln

BB BEQ
EQ

E B

EQ
BEQ

ES

V V
I

R R

IkT
V

q I






 



 

And: 

CEQ CC C CQ E EQ

CQ EQ

V V R I R I

I I

  


 

We will come back to the previous circuit later in the course. We are going to see 

methods for biasing the circuit of Fig.1-9. The first method is based of the 

stability factor 
BE

CQ
V

BE

I
S

V





. Using the above equations, we obtain: 

1

(1 )BEV
E B E

S
R R R





 
 

 
 

We know that the base emitter voltage has a variation that is inversely 

proportional to variation of the temperature, 2.2 / CBEQV mV T     , so, if 

we are given a variation of ICQ for a given variation of temperature T , we can 

compute the value of RE and then RB such that (1 )
10

E
B

R
R  . 

 

Example 3: 

 

 We want to bias a 2N3904 transistor having βmin = 50 with ICQ = 1 mA 

and we can tolerate a variation of  10% of collector current when the ambient 

temperature varies by  30°C, the power supply is 10 V. 

 30 CT   , so 2.2 / C 30 C - 66BEV mV mV       , so  

66
660

0.1

BE
E

CQ

V mV
R

I mA


    


 

And then, since 
1

(1 )
1




 


, we obtain  

( 1) 51 660
3366

10 10

E
B

R
R

  
     

We leave the remaining calculation as homework (Compute R1, R2, RC and CE). 
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You should note that we have used the value of βmin. It is because it corresponds 

to the maximum value of IBQ. 

Another method of design is to use the following rule of thumb. 

The voltage VE across the capacitor CE should be set to a value of about 

10% of VCC as long as it is larger than 1 V. A smaller value of VE will lead to 

thermal instability. The voltage divider current IP should be set to a value that is 

at least equal to ten times the maximum base quiescent current. We can repeat the 

same design as in example 3. 

1
10

CC
E

V
V V  so 

1
1

1
E

V
R k

mA
   , max

min

1
20

50

CQ
BQ

I mA
I A


    

The current IP is given by: max 10 0.2P BQI I mA   so the sum of the two 

resistors R1 and R2 is given by: 
10

1 2 50
0.2

CC

P

V V
R R k

I mA
     and the 

voltage at the base of the transistor is: 

             
2

1 0.65 1.65
1 2

B CC E BEQ

R
V V V V V V V

R R
     


and we obtain 

R2 = 8.25 kΩ and R1 = 41.75 kΩ. The bypass capacitor can be computed if we 

know the lowest frequency to be amplified. Let us assume that it is 100 Hz.  

The dynamic resistance of the base emitter junction is: 

26
26

1
e

EQ

kT mV
r

qI mA
     

So if 
1

2 10

e
CE

E

r
Z

fC
 , we obtain 612EC F . 

 

 

The next biasing system consists of replacing the emitter resistor RE by a current 

source. The type of current source we will demonstrate is the current mirror 

which commonly used in integrated circuits. This circuit is shown in Fig.1-11. 
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Fig.1-11 Biasing using a current mirror 
  

 

Since we are considering integrated circuits, we can always take for granted that 

the only way that two transistors will differ will be through their geometry. So, if 

we use the same masks to diffuse the two transistors, they will be identical. So, in 

the analysis of the above circuit, we assume that T2 and T3 are identical, which 

means that 
2 3ES ESI I . For each transistor, we can write 

BEk

k

qV

kT
Ek ESI I e , and 

if we consider T2 and T3, we can remark that 
2 3BE BEV V so 

2 3E EI I . The 

transistor T2 is connected as a diode with the collector and the base shorted. It is 

quite common to use transistors as diodes in integrated circuits. They occupy the 

same silicon area and it is easier to achieve identical transistors than identity 

between a diode and a transistor. The currents obey: IRB = IB2 + IE3. Since the 

transistors are identical, they have the same  . So, we can write: IRB = (2 – α)IE2. 

We finally obtain the following equation for the current IE2: 

2
2

(2 )

EE BE
E

B

V V
I

R





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And of course: IC2 = αIE2 and we can use the value of 750 mV for VBE2. We can 

remark that if α = 1 then IC2=IRB, so the circuit mirrors the current IRB which is 

produced by a non ideal current source to the current IC2 which is the collector 

current of T2 and as long as VCE2 is larger than VCEsat, the transistor T2 will 

behave as an ideal current source. So, as long as the lower pair of transistors 

behaves as a current source, we can replace it in the schematic and we obtain the 

following schematics. 

T1

IC2

vi

CE

RC

+VCC

-

+

 

 

Fig.1-12 Biasing using a current source 

 

 The model of Fig.1-12 is the simplest one to analyze because the dc current 

is fixed by the current source and it does not depend on a voltage drop across a 

resistor. 

 It is interesting to compute the dc voltage stored in the capacitor CE. We are 

going to show that it depends on the applied voltage vi. The base emitter voltage 

BEv is the sum of the ac voltage vi and the capacitor voltage DCV . 

BE i DCv v V   

When vi = 0, the capacitor is charged to: 

2ln C
DCQ

ES

IkT
V

q I
  
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When 0iv  , the capacitor charges to a different value DCV . This is due to the 

non linearity of the transistor that does not amplify in the same way the two 

alternances of the ac signal. Since the circuit is non linear, we cannot analyze it 

for a general signal, so we assume that the input ac signal is sinusoidal: 

1 0cosiv V t  

1
0

0

cos

cos

DCBE

DC

qVqv qV
t

kT kT kT
E ES ES

qV

x tkT
ES

i I e I e e

I e e





 



 

Where 1qV
x

kT
 . 

We can remark that the output current is not sinusoidal. 

( ) ( )

( ) ( )

C E

C CC C C

i t i t

v t V R i t



 
 

The current Ei is periodic and it can be developed in Fourier series. 

0cos
0 0

1

( ) 2 ( )cos
x t

n

n

e I x I x n t
 





    

( )nI x is the modified Bessel function of the first kind, of order n and argument x. 

We obtain finally: 

0 0
01

2 ( )
( ) 1 cos

( )

DCqV

nkT
E ES

n

I x
i I e I x n t

I x






 
  

 
  

Thus, the average value of the emitter current Ei   is: 

0( )
DCqV

kT
E ESi I e I x    

And it must be equal to 2CI , since it is the only dc current present in the circuit 

and no dc current can flow in a capacitor. The fundamental and the harmonics of 

iE will flow through the by-pass capacitor, so we have the following expression 

for the emitter current: 

2 0
0

2 ( )
1 cos

( )

n
E C

I x
i I n t

I x


 
  

 
  

 

 

 

And we can compute the capacitor voltage from the expression of <iE>: 
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2 2
0

0

0

ln ln ln ( )
( )

ln ( )

C C
DC

ES ES

DCQ

I IkT kT kT
V I x

q I I x q I q

kT
V I x

q

  

 

 

We remark that this voltage depends on x, i.e. on V1. 

 

1.4 The Field Effect Transistor. 

 The field effect transistor operation is not based on the transformation of 

majority carriers into minority ones but on the modification of the conduction of a 

channel by an electrical field. The field can be developed inside a depletion 

region of a reverse biased PN junction (junction FET or JFET) or using the 

electrical field developed inside a capacitor (metal oxide semi-conductor or 

insulated gate FET, MOSFET, IGFET). In MOSFET, the channel can be depleted 

as in JFET or it can be enhanced. The following figures show a simplified 

structure of the different FET transistors along with the associated symbol. 
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Fig.1-13 N-channel JFET structure and symbol.  
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Fig.1-14 Depletion mode N-channel MOSFET structure and symbol 
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Fig.1-15 Enhancement mode N-channel MOSFET and symbol 

 

 The arrow in the different symbols indicates the conducting direction of the 

PN junction (gate-channel or substrate channel). If the channel is of P type, then 

the arrow should be reversed.  

The different FET transistors have a half square law transfer characteristic 

(ID, VGS). We start with the description of the N channel JFET transistor. It is 

evident that the gate-channel diode should never be forward biased. So, in normal 

use, the gate voltage should always be lower than the source voltage. A good 

approximation for the transfer characteristic is: 

 
2

1 0

0

GS
D DSS P GS

P

GS P

v
i I V v

V

v V

 
    

 

 

 

 

The above relation is valid for a drain source voltage DS Pv V . This 

transfer characteristic is plotted below (Fig.1-16). IDSS is the drain saturation 

current and |VP| is the pinch off voltage. 
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Fig.1-16 N channel JFET transfer characteristic 
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The output curves (ID, VDS) of the FET transistor are also quite different 

from the ones of the BJT.  The following curves are ideal in the sense that the 

output impedance of the FET transistor is assumed to be infinite. 

 

 
Fig.1-17 Output curves iD vs vDS 

 

 We can remark two distinct regions in the above curves. In the area 

corresponding to vDS > -VP, the transistor behaves as a current source (controlled 

by vGS). It is called the saturation region and it corresponds to the complete pinch 

off of the channel. It is the normal operating region. The other region is called the 

ohmic region. For small values of vDS, the resistance of the drain to source 

channel is variable and is controlled by the gate to source voltage vGS. 

 

For vDS limited to a few hundreds of millivolts, we can use the following 

expression: 
2

0
2 ( )

P
DS P GS

DSS GS P

V
R V v

I v V
  


 

 

and we can use the JFET as a variable resistor in circuits. The above 

relation is valid even if vDS is negative as long as it is small enough. 

vGS<0 

IDSS 

vDS 

vGS= 0 

-VP 

iD 
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Fig.1-18 Voltage controlled attenuator 

 

The above circuit is an example of a voltage controlled attenuator. If we 

assume zero source impedance and infinite load impedance, its transfer is given 

by: 

out DS

in DS

v R

v R R



 

as long as |vout| is limited to few hundreds of millivolts. The smallest value 

of RDS is usually called Ron when we use the FET as a switch. If the control 

voltage vGS is a square wave varying between 0V and Vmin< VP and if R >> Ron, 

then the above circuit can be used as a chopper (for modulators). 

 

Biasing the JFET 

Biasing the JFET means fixing the values of IDQ and VDSQ. The following 

circuit provides a very simple way of achieving the above Q point. 
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Fig.1-19 Biasing using a source resistor. 

 

The above biasing circuit is based on the fact that the gate to source diode 

is reverse biased (under normal operation) and that there is practically no current 

that flows through the resistor RG. So, the biasing relations are: 
2

1
GSQ

DQ DSS

P

V
I I

V

 
  

 
 

GSQ S DQV R I   

And DSQ CC GSQV V V  if the capacitor CS is large enough so that its voltage 

remains constant when iD varies and if there is no dc drop across the load ZL. We 

can guarantee the above result if the impedance of the capacitor is much smaller 

than the impedance connected in parallel which is RS in parallel with the inverse 

of the small signal transconductance at the Q point (1 mQg )  at the lowest 

operating frequency. A graphical representation of the above relations is shown 

below: 
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Fig.1-20 Biasing using a source resistor 

 

The RG resistor should be such that the gate voltage is as close to zero volts 

as possible. You can find the maximum reverse gate source current in 

manufacturers' data sheets. The main problem with the above circuit is the fact 

that the Q point is highly dependent on the transistor parameters IDSS and VP. A 

smaller variation of IDQ is provided by the following circuit (based on a higher 

voltage across the resistor RS. 
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Fig.1-21 Biasing a JFET using a source resistor and a gate voltage. 
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The voltage divider R1, R2 raises the gate voltage to 
GG DD

R2
V =V

R1+R2
. At 

that time, the biasing load line becomes 
GG GSQ S DQV -V = R I  which is represented in 

the figure below. We can remark the small variation of IDQ when we change the 

transistor. 

 

IDSS1

I
DSS2

V
P1

V
P2

i
D

v
GSV
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IDQ=

-V
GSQ

+ VGG

RS

I
DQ

 
Fig.1-22 biasing a JFET using a source resistor and a gate voltage 

 

The different MOS transistors obey a transfer characteristic which also 

square law. However, the gate source voltage is not restricted to negative 

voltages. The transfer characteristic of a MOSFET is thus: 

 
2( )

0

D GS th GS th

D GS th

i v V v V

i v V

  

 
 

If the transistor is of depletion mode, the threshold voltage Vth is negative 

and for enhancement mode MOSFET, it is positive. 

The biasing circuits for depletion mode MOSFET can be the same as the 

ones described above for JFET. The value of the gate resistor can be much higher 

since the input of the transistor is a capacitor and not a reverse biased diode. The 

depletion mode MOSFET can even be biased with VGSQ = 0V because vGS can be 

positive.  

The biasing circuits of enhancement mode MOSFET will be the same as 

the one shown in Fig.1-21. The biasing load line is the same as the one shown 

in Fig.1-22, with the transfer characteristic translated to the right. 
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Fig.1-23 biasing an enhancement mode MOSFET 

 

If we want to avoid any variation of the biasing current IDQ, we can use a 

current source to provide the current. 
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Chapter 2 

 

Passive frequency dependent networks  

and transformer like networks 

 

Practically all CW communication circuits are band pass circuits. A typical 

circuit consists of a cascade of active devices and passive networks. The passive 

networks are used to couple circuits together, to select a particular band of 

frequency around some carrier and to match impedances. The basic building 

elements of these networks are: resistors, capacitors, inductors and transformers 

(mutual inductance). 

 

2.1 Impedance and Admittance 

 

One port networks are characterized by a relationship between the voltage 

across the device and the current through the device. If the device is composed of 

resistors, capacitors or inductors, the relationship is linear and time invariant. 

The resistor is characterized by a memoryless relationship: 

( ) ( )v t Ri t  between time domain variables, V RI between phasors and 

the same relation between Laplace transformed variables ( ) ( )V s RI s . 

The capacitor and the inductor have a differential relationship: 

( )
( )

di t
v t L

dt
  and 

1
( ) ( )

t

v t i d
C

 


   in the time domain, V jL I  and 

1
V I

jC
 between phasors and ( ) ( )V s LsI s  and 

1
( ) ( )V s I s

Cs
 between 

Laplace transformed variables. Each one of the devices is characterized by an 

attribute: Resistance for the resistor, inductance for the inductor and capacitance 

for the capacitor. When we consider relations between phasors, the current and 

the voltage across the one port device is a complex number. It is a function of 

either the complex number s j    or just the purely imaginary number j . 
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The impedance is the complex number: 

     Z j R j jX j    , the real part  R j is called the resistance of 

the circuit and the imaginary part  X j is the reactance of the circuit. The 

current and the voltage for a general one port network are related by: 

     V j Z j I j    

The inverse relationship      I j Y j V j    is provided by the 

admittance: 

     Y j G j jB j    . The real part  G j  is called the conductance 

of the circuit and the imaginary part is called the susceptance of the circuit.  

If the network is passive, the resistance (the conductance) of the network is 

always positive. The one port network will be inductive if   0X j   

(   0B j  ). The network will be capacitive if   0X j   (   0B j  ). 

Parallel series transformations 

One port networks can be seen either as a series representation of a 

resistance and a reactance or as a parallel combination of a conductance and a 

susceptance. 

Rs

jXs

                      

Gp jBp Rp jXp

 
Fig.2- 1 Series parallel transformations 

         

As shown in the above figure, we have three possible representations of the 

same impedance. We can thus write the following relations: 

  

1 1
    

s s

p p

p p

Z R jX

Y G jB
R jX

 

   
 

Since
1

Y
Z

 , we have the following equations: 

 
2 2

s
p

s s

R
G

R X



 and 

2 2

s
p

s s

X
B

R X





. These relations are often stated as a 

function of the quality factor of the impedance. The quality factor Q is defined as: 
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Q
p ps

s p p

B RX

R G X
    

The "Que" of the circuit indicates how reactive the circuit is. A pure 

reactance will have Q = . 

 2

1

1 Q
p

s

G
R




;  
 

2

2

Q

1 Q
p

s

B
X





. 

The above expressions are frequently given in terms of Rp and Xp: 

 21 Qp sR R   and 
 2

2

1 Q

Q

s

p

X
X


 . If Q 10, these relations simplify 

to: 2Qp sR R and 
p sX X  (with an error of less than 1%). 

We can use the above relations to solve single frequency matching 

problems as shown in the following example. 

Example: 

We want to match a 50  load to a source having a resistance of 5 k at 

the frequency of 1 MHz. We can use the following network: 

C

R
50  

L

V1

Rs 5k  

 

If we use the above approximate formula, we can transform the series 

combination of C and R to parallel Cp and Rp.  
2QpR R giving Q

2
 = 100 or Q = 10. This value of Q justifies the use of the 

approximate relation. From Q
p

p

B

G
 , we obtain: Qp pB C G  (Cp = C). This 

provides: 

C = 318 pF, we use the standard value C = 330 pF. L is used to cancel the 

reactance of C: 
1

L
C




 giving L = 79 H. We can use this value if we build the 

inductor or use the standard value L = 82 H. 

2.2 Two port networks 

In this chapter, we are going to study coupling networks. These networks 

are used to filter signals and match impedances. 
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Linear time invariant two port networks are characterized by matrices 

relating the different variables. The variables represent small ac voltages and 

currents. 

                     
Fig.2- 2 Two port network 

Any pair of variables from  1 2 1 2, , ,i i v v  can be associated with the other pair 

of variables. Two of the commonly used parameters are: the “z” (open circuit) or 

impedance parameters and the “y” (short circuit) or admittance parameters. 

The impedance parameters are described by the following set of equations: 

1 11 1 12 2

2 21 1 22 2

v z i z i

v z i z i

 

 
 

or in matrix form: 

1 11 12 1

2 21 22 2

v z z i

v z z i

    
    

    
 

2

1
11

1 0i

v
z

i


 is the input impedance for an open output port. 

1

1
12

2 0i

v
z

i


 is the reverse transimpedance for an open input port. 

2

2
21

1 0i

v
z

i


 is the forward transimpedance for an open output port. 

1

2
22

2 0i

v
z

i


 is the output impedance for an open input port. 

The two port network is said to be reciprocal when the open circuit voltage 

measured at one port due to a current excitation at the other port is unchanged 

when the measurement and excitation ports are interchanged. 

In this case, z12 = z21. The proof is left as an exercise. A network containing 

only R, L, C and M elements is always reciprocal. 

The two port is said to be unilateral if the reverse transimpedance is zero: 

z12 = 0. In this case, there is no feedback from the output port to the input one. 

 

 

Two port 

network 

v1 v2 

i1 i2 
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The disadvantage of the impedance parameters is the fact that they are 

difficult to measure. One port must be open during the measurement. The 

parasitic capacitances will affect the measurement. This problem does not exist 

with the admittance parameters since they are short circuit parameters. 

The admittance parameters are described by the following set of equations: 

1 11 1 12 2

2 21 1 22 2

i y v y v

i z v z v

 

 
 

or in matrix form: 

1 11 12 1

2 21 22 2

i y y v

i y y v

    
    

    
 

2

1
11

1 0v

i
y

v


 is the input admittance for an shorted output port. 

1

1
12

2 0v

i
y

v


 is the reverse transadmittance for an shorted input port. 

2

2
21

1 0v

i
y

v


 is the forward transadmittance for an shorted output port. 

1

2
22

2 0v

i
y

v


 is the output admittance for an shorted input port. 

It is evident that the (Z) matrix is the inverse of the (Y) matrix and vice 

versa. Since the elements of the (Y) matrix are easier to measure at medium and 

high frequency, the "y" parameters are commonly used to design HF, VHF and 

even UHF amplifiers. At higher frequencies, it is better to use distributed 

parameters such as the scattering parameters. 

2.3 Mutual Inductance and transformer 

A commonly used two port network consists of two inductors coupled 

magnetically: the transformer. 

L1 L2

M

 
Fig.2- 3 Mutual Inductance 

The winding corresponding to L1 is called the primary, the other is the 

secondary. The dots indicate the way the transformer is wound. The coupling is 

due to the mutual inductance M. With the dots positioned as in Fig.2- 3, the 
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mutual inductance is positive. If the two coils are wound in opposing direction, 

the value of M will be negative and the dots will be drawn on opposing ends of 

the windings.   

The basic equations are: 

1 2
1 1

1 2
2 2

( )

( )

di di
v t L M

dt dt

di di
v t M L

dt dt

 

 

 

If we consider the transfer of energy in the transformer, we can show 

that 2

1 2M L L . We can define a coupling coefficient
1 2

M
k

L L
 . It is evident 

that 1k  . The sign of k is indicated by the dots positions. When |k| = 1, the 

magnetic coupling is total. All the magnetic flux generated by one winding flows 

inside the other one. An extreme case is the ideal transformer. 

1 n:

ideal

I1
I2

V1 V2

 
Fig.2- 4 Ideal Transformer 

The direction of currents in Fig.2- 4 is non conventional for two port 

networks. However, it simplifies the analysis of the circuit. n is called the turn 

ratio. The basic equations for the ideal transformer are: 2 1V nV  and the 

conservation of power: 1 1 2 2V I V I . Consequently, 1 2I nI . If we connect a load Z 

at the secondary, it will appear at the primary as 1 1 2 2

2

1 2 2 1

V V V I Z

I V I I n
  . This relation 

can be used for matching impedances. We can also remark that the ideal 

transformer does not transform the type of impedance. If Z is resistive, its 

transform remains resistive. The same thing results for inductive and capacitive 

loads. In many cases, the direct use of the circuit of Fig.2- 3 is not very commode. 

The following one is more useful. 

 

1n :

ideal

La

Lb

 
Fig.2- 5 Equivalent circuit 
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In the above circuit, La = (1  k²)L1, Lb = k²L1 and 1

2

L
n k

L
 . We can 

remark that n has the same sign as M. Furthermore, the circuit shows that a 

physical transformer is equivalent to an ideal transformer if we have total 

coupling (k² = 1) and infinite (very large) inductances for the primary (and the 

secondary) winding. When we have perfect coupling, 1

2

L
n

L
  . We know that 

the value of an inductance is proportional to the square of the number of turns of 

its windings. The constant of proportionality depends on its physical size. Since 

the primary and the secondary are both wound on the same core, we can write 
2

1 1L n and 2

2 2L n , where n1 and n2 are respectively the number of turns of the 

primary and the secondary. This means that 1

2

n
n

n
  and this justifies the name 

"turn ratio". 

2.4 Parallel RLC circuit 

In this section, we are going to analyze a one port network commonly used 

as a frequency selective filter. This circuit is composed of a resistance R, an 

inductance L and a capacitance C in parallel. 

 

RL C

 

 

The input of the above circuit is a current source. It may represent the 

collector current of a bipolar transistor for example. The output is the voltage 

across the parallel RLC circuit
1
. This means that the transfer function is the 

impedance of the circuit. 

2

1 1
( )

1 1 1

s
Z s

sC
Cs s

Ls R RC LC

 

   

 

Let 2

0

1

LC
  and 01

2
TRC Q


   . The transfer function becomes: 

                                                         
1
 Commonly called "Tank" circuit. 

ii(t) v0(t) 

Fig.2- 6 Parallel RLC circuit 
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2 2

0

1
( )

2

s
Z s

C s s 


 
 

This transfer function possesses one zero at the origin and another one at 

infinity. It has also two poles: 2 2

1,2 0p       . The poles can be real or 

complex. Since we use the tank circuit as a narrow bandpass filter, we will 

consider only the complex case, i.e. 
0  or

1

2
TQ  . In this case, we can express 

the poles as: 2 2

1,2 0p j j           . Replacing  by its value, we obtain: 

0
1,2 0 2

1
1

2 4T T

p j
Q Q


    . If QT > 10, the poles become 0

1.2 0
2 T

p j
Q


   with 

a very high precision. In this event, these poles will be also very close to the j 

axis. 

We can remark that the poles satisfy 2 2 2

0    . Given that   0, the 

locus of the poles in the complex plane is a quarter of a circle on the top left 

quarter of the plane for one pole and the symmetrical one with respect to the real 

axis for its conjugate.  

 

 
Fig.2- 7 Pole and Zero Plot 

The pole and zero plot is a plot of the location of the poles (indicated by ) 

and the zeros (indicated by ) along with the value of the scale factor (SF) for a 

transfer function H(s): 

    
    

1 2

1 2

( ) m

n

s z s z s z
H s SF

s p s p s p

  


  
 

 

SF = 
1

C
 

 

 0 
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Fig.2- 8 Typical Pole and Zero Plot 

The pole and zero plot allows a graphical evaluation of the transfer function 

in the frequency domain. The transfer function in the frequency domain is the 

evaluation of H(s) for s on the j axis: 

1 2

1 2

( )( ) ( )
( ) ( )

( )( ) ( )

m

s j
n

j z j z j z
H j H s SF

j p j p j p

  


  

  
 

  
             (1) 

The modulus and phase versus frequency are given by: 

1 2

1 2

( ) m

n

j z j z j z
H j SF

j p j p j p

  


  

  


  
 

1 2

1 2

( ) z z zm

p p pn

l l l
H j SF

l l l
                                           (2) 

and        
1 1

( )
m n

i k

i k

Arg H j Arg SF Arg j z Arg j p  
 

       

   
1 1

( )
m n

zi pk

i k

Arg H j Arg SF  
 

                            (3) 

where lzi is the length of the vector joining the zero zi to the point of 

coordinate  on the imaginary axis while zi is the angle that this vector makes 

with the real axis. lpk is the length of the vector joining the zero pk to the point of 

coordinate  on the imaginary axis while pk is the angle that this vector makes 

with the real axis as shown on Fig.2- 8. 

In our case, the existence of a zero at the origin and another one at infinity 

imply that the value of |Z(j)| at  = 0 and at  =  is zero. This means that the 

SF  

p1 

z1 

p1 

z1 

lp1 

lz1 

 
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system is bandpass and |Z(j)| is maximum at some frequency. In fact, the pole 

and zero plot of Fig.2- 7 shows that this frequency is 0. We have also 

|Z(j0)| = R (at this frequency, the susceptance of L and C cancel each other). In 

our case, the simple shape of Z(s) allows a straightforward algebraic evaluation of 

Z(j). 

2 2

0

0

( )

1 T

R
Z j

jQ


 








 

|Z(j 



R

2

R

 
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Fig.2- 9 Modulus and Phase Response of the Tank circuit 

 

We remark that the impedance is resistive at  = 0 (its value is R); it is 

inductive below 0 and capacitive above. From Fig.2- 9, we observe clearly the 

bandpass nature of the transfer function. The above expression can be used to 

compute the "3 dB" bandwidth of the circuit. The bandwidth B is defined as the 

difference between the two "3 dB" cutoff frequencies: B = 2  1. These two 

frequencies are the ones for which |Z(ji)| = |Z(j0)|/ 2 , i = 1,2. Using the 

previous equation and solving for 1 and 2, we obtain: 
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0 1 2   and 0
2 1

T

B
Q


     

The resonant frequency is the geometric mean of the two cutoff frequencies 

(it is not in the middle). This result shows clearly that the transfer function is not 

symmetrical with respect to the resonant frequency. However, when QT is high, 

the two frequencies will become close to each other and the geometric mean will 

be close to the arithmetic one. This narrow band approximation can be obtained 

using the technique of graphical evaluation of transfer functions seen previously. 

Using the pole and zero plot of Fig.2- 7 and equations (2) and(3), we 

obtain: 

0

1 2

1
( ) z

p p

l
Z j

C l l
  and   0 1 2( ) z p pArg Z j       

When we evaluate the above equations for  around 0, we obtain: 

lz0 =   0, lp2  20 because  is very small. So: 

0

0 1 1

1 1
( )

2 2p p

Z j
C l Cl





   

We have also: z0 = /2, p2  /2, giving:   1( ) pArg Z j   . Grouping 

the two results, we finally get: 

1

1

1
( )

2 pj

p

Z j
Cl e


   

The complex number 1

1

pj

pl e


is the vector connecting the pole p1 to the point 

j in the complex plane. So,  
1

1 0( ) ( ) ( )pj

pl e j j j j


                  . 

This implies that we can approximate Z(j) very closely by: 

 
  0 00

0

1 1 1
( )

2 2
1 1 2 T

R
Z j

C j C
j j Q


      

 

  
      

    (4) 

The above result is valid for positive frequencies around 0. For negative 

frequencies, we can use the fact that Z(j) = Z
*
(j). Fig.2- 10 (for QT = 10, 

0 = 5 rd/s and R = 10 ) shows that the two responses are very close. In fact, the 

approximation is very accurate for all frequencies between the cutoff frequencies 

1 and 2. A closer look at the approximation shows that the curve is 

symmetrical with respect to the line  = 0. In fact, the resonant frequency is now 

the middle of the interval [1, 2]. Equation (4) is commonly used when we want 

to obtain the equivalent lowpass filter for the analysis of bandpass signals. 
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Fig.2- 10 Exact and Approximate Amplitude response 

 

2.5 Series Resonant Circuit 

When the signal source has low impedance, it is usually modeled as an 

ideal voltage source. At that time, we cannot use a parallel tank circuit since any 

circuit in parallel with an ideal voltage source will have no effect. A series 

resonant circuit corresponds to the circuit shown below. 

 

R

C
L

v

 
Fig.2- 11 Series Resonant Circuit 

 

We don’t have to repeat the analysis for the above circuit. By using the 

principle of duality, we can immediately derive the admittance function of the 

circuit. We simply replace L by C, C by L, R by G, Z by Y and i by v. 

The parallel tank circuit had an impedance function given by: 

2

1
( )

1

s
Z s

sC
s

RC LC



 

 

The application of the duality principle gives: 

2 2

1 1
( )

1 1

s s
Y s

s RL L
s s s

LG LC L LC

 

   
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Having the same transfer function, the analysis of this circuit will be 

identical to the one derived for the parallel RLC circuit and is left as an exercise. 

2.6 Parallel Resonant Circuit with Series Loss 

 

If one of the reactive elements in a parallel connection of an inductor and a 

capacitor possesses series loss, the zeroes of the impedance function are going to 

move. If the loss is in series with the capacitor, the zero at infinity moves to a 

finite value. 

 

r

C

L

 
Fig.2- 12 Parallel Resonant Circuit with Series Loss 

 

The impedance transfer function in this case is given by the parallel 

combination of the inductance L and the series arrangement of the capacitance 

and resistance. So: 

 

2

1 1

( )
1 1

Ls r rs s
Cs rC

Z s
r

Ls r s s
Cs L LC

   
    

    

   

 

 

Let 
2

r

L
  , 2

0

1

LC
  and 

0

1
CQ

rC
 . The impedance transfer function 

has two real zeros: at the origin and at 
1

rC
 . It has two poles: at 

2 2

0j j          . 
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Fig.2- 13 Pole and Zero Plot 

According to the above pole and zero plot, if  is small, the two poles will 

be complex and their imaginary part  will be practically 0. A simple 

manipulation shows that 0

2 CQ


  . The fact that this transfer function has two 

zeros and two poles implies that the value of the impedance at infinity is different 

from zero. In fact ( )Z r  . From the pole and zero plot, we also have: 

0 1
0

1 2

( ) z z

p p

rl l
Z j

l l
   

 

along with: 0 0zl  , 2

1 02 2

1
zl

r C
  , 1

2
p

r
l

L
 and 2 02pl  . This gives: 

2

0 0( ) 1 CZ j L Q   . We also have 0 CL rQ  . So, 2

0( ) 1C CZ j rQ Q   . If 

10CQ  , 2

0( ) CZ j rQ  . It is also apparent from the same pole and zero plot that 

 0( ) 0Arg Z j   if 10CQ  . Then, we can say that if 10CQ  , the impedance of 

the circuit at 0 is resistive and is equal to: 
2

CR rQ                                                             (5) 

For all frequencies around 0 , the circuit is equivalent to a parallel RLC 

circuit. Equation (5) can be used for impedance transformation (matching). For 

the high Q case and if r is small, we can say that most of the time |s| can be 

neglected compared with 
1

rC
. The transfer function becomes: 

SF = r 

1zl  

0zl  

1

rC
 

2pl  

1pl  
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2 2 2 2

0 0

1

1
( )

2 2

rs
srC

Z s
s s C s s   

 
 
  

   
 

Using (5), we can see that 
0

0

1
CQ RC

rC



   and that 

1

2RC
  . This is 

the same as the one of the parallel RLC circuit. 

If now the loss is in series with the inductor, the same analysis can be 

repeated, but now it is the zero at the origin that moves to a real negative value. 

 

L

r

C

 
Fig.2- 14 Inductor with series loss 

 

 
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1
1

( )
1 1

r
sr Ls

LCsZ s
rC

r Ls s s
Cs L LC

 
  

  

   

 

In this case also, if 0 10L

L
Q

r


  , then we can replace the series circuit 

composed of r and L by a parallel one composed of L in parallel with 2

LR Q r . 

Both circuits can be used for impedance matching. The value of Q is used to 

transform a small resistive load to a large apparent load. So, in this part, we find 

the same results as the ones derived in the series parallel transformations. To see 

an example of application, refer to the example in page 31. 

2.7 Transformer like networks 

The matching networks described above allow impedance transformation at 

a single frequency. However, their frequency response around that frequency is 

not very accurate. They are bandpass, but since they are built around only two 

components (a capacitance and an inductance), we have only two degrees of 

freedom. We can set the resonant frequency and the impedance transformation. 

The impedance transformation is due to a multiplication by Q². This fixes the 

value of the bandwidth. In general, we need circuits that have three degrees of 
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freedom if we want to set three quantities: The impedance transformation, the 

resonant frequency and the 3 dB bandwidth. One solution is to use a tank circuit 

in cascade with an ideal transformer. 

 

CL G

1  :  n

ideal  
Fig.2- 15 Ideal transformer matching 

 

In the above circuit the conductance is reflected to the input of the 

transformer to a value equal to 2n G . The resonant frequency is given by 

2

0

1

LC
  and the quality factor is 0

2

C
Q

n G


 . So, we have three elements that can 

be adjusted in order to set the above cited three parameters. The ideal transformer 

can be approximated by a transformer wound around a toroidal core such as the 

ones illustrated below. 

 
Fig.2- 16 Toroidal core transformers 

 

The problem with these transformers is that they are rather bulky and if we 

have to use them, they are quite far from ideal. We are going to analyze circuits 

that have the same behavior but that do not use ideal transformer.  

The first system is a split capacitor network. 
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3  
Fig.2- 17 Split capacitor matching network 

 

Under circumstances that will be stated later, this circuit is equivalent to the 

one shown in Fig.2- 15. To show this equivalence, we have to show that the two 

circuits have the same input impedance (loaded) and the same transfer function. 

The input impedance of the circuit is given by: 

1 2

11
3 2

2 1 2

1 2

1 1
( )

1 1 1

1 1

G
s s

C C
Z s

G GC
s s

Ls C LC LC C

C s C s G

 
 

  

   




 

where C is the series equivalent capacitance of C1 and C2: 
1 2

1 2

C C
C

C C



. 

We see that Z11(s) has two finite real zeroes (at the origin and at 
1 2

G

C C



) 

and three poles. One pole is always real; the other two can be either real or 

complex conjugate. In order for the system to be narrow band bandpass, the poles 

must be complex at j   . The denominator can then be written as: 

   s s j s j          

The pole and zero plot is shown in Fig.2- 18. If we want to have 

equivalence with a parallel RLC circuit, we must have a cancellation between the 

real pole at  and the real zero at 
1 2

G

C C



. To find conditions for this to occur, 

let us identify the development of the denominator in terms of ,  and  and the 

one in terms of G, L, C1 and C2. 
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Fig.2- 18 Pole and Zero Plot 

Developing the denominator, we obtain: 

     3 2 2 2 2 22 2s s s               

Identifying the coefficients in the two polynomials produce the following 

three equations: 
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 
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 
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We know that in the impedance function of the parallel RLC circuit, the 

root locus of the complex poles is a circle of radius 0, i.e. 2 2 2

0    . So, we 

can rewrite the second equation as follows: 

2 2 2

0 2

0

2
1


  



 
   

 
 in order to be able to appreciate the precision of 

the approximation (in percent). Let us call 
2

0

2




  . The three equations are 

then: 

 

 

 o o 
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where 1

1 2

C
n

C C



. 

Now, if  > 100, we have 
1 2

G

C C
 


with an error that is less than 1% and 

of course 2 2 2

0    . The real part of the poles satisfies: 
2 1

2 1
n G

C n


 
  

 
 

Even if  is larger than 100, we cannot eliminate the product n because n 

is less than 1. So, if  is larger than 100, we have the pole and zero cancellation 

and the input impedance will be the one of a parallel RLC circuit. 

11 2 2

0

1
( )
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s
Z s

C s s 


 
 

So, if we can control the value of , we can find conditions for the 

equivalence. The problem is that  does not correspond to physical quantities. In 

order to have criteria that depend directly on the circuit elements, let us develop 

the expression of . 

 2 1 2
20
0

2

1 1
1 1

12
1

C C C

G
n G

n






   
     
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We can introduce two “Que’s”:  

0
' 2T

C
Q

n G


  and 

 0 1 2

E

C C
Q

G

 
 . 

QT’ corresponds to the Q of a tank circuit composed of the capacitance C in 

parallel with the inductance L and in parallel with ' 2

1
TR

n G
 . QE on the other 

hand corresponds to the Q of the parallel combination of G with C1 and C2. 
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The expression of  becomes: 
2

'

1
1

1
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T EQ Q

n

 
 
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 
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1 1
1T EQ Q

n

 
    

 
 

So if  is large, then we obtain: 
'

1
T EQ Q

n
   . 

The above expression shows clearly that, if 
' 100T EQ Q  , then  will be 

even larger. At that time, from the input impedance point of view, the circuit 

becomes equivalent to a resistance RT in parallel with C in parallel with L where: 

2

'

1 1
1

1
T

T T E

G n G
R nQ Q

 
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 
                                    (6) 

However, if ' 100T EnQ Q  , then 21
T

T

G n G
R

  . 

Under the above condition, the circuit is then equivalent to the circuit 

shown in Fig.2- 15. To have the complete equivalence, we must show that the 

voltage transfer of the circuit is the one of the ideal transformer. In other words, 

the voltage transfer of the circuit must be ( )H s n . 

H(s) is the transfer of the following voltage divider: 
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1 2
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Evaluating the above expression on the imaginary axis provides: 
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
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

 

So, if QE > 10, we can safely say that ( )H j n   at all frequencies. To 

resume the different approximations, we can say that if 
' 100T EQ Q  , the split 

capacitor circuit is equivalent to a parallel tank circuit loaded by a resistance 

given by equation (6). If we have 
' 100T EnQ Q  , the circuit is equivalent to the 

circuit shown in Fig.2- 15, but only from the input impedance point of view. If we 

add the condition 10EQ  , the equivalence becomes complete and we can replace 

the circuit of Fig.2- 17 by the one of Fig.2- 15. This approximation will greatly 

simplify the analysis of circuits. 

In the next circuit, we use a voltage divider built by means of two 

inductors. 

  

L1

L2
G

Ci

2

1

3  
Fig.2- 19 Split Inductance Circuit 

 

In the circuit shown above, we assume that there is no magnetic coupling 

between the two inductances. We don’t have to redo the same analysis for this 

circuit. The tank circuit resonant frequency is 0

1

LC
  . L is the inductance of 

the series connection of the two inductances L1 and L2, 1 2L L L  . The ideal 

transformer turn ratio n is the voltage transfer of the circuit with no load (G = 0). 

So, 2

1 2

L
n

L L



. Applying the definitions of QT’ and QE given previously we get: 

0
' 2T

C
Q

n G


  (Q of a tank circuit composed of the capacitance C in parallel 

with the inductance L and in parallel with ' 2

1
TR

n G
 ) and 1 2

1 2 0

E

L L
Q

L L G


  (Q of the 

parallel combination of G with L1 and L2). 
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If there exist magnetic coupling between the inductors, we obtain a 

transformer.  

 

C
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G
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Fig.2- 20 Tuned Primary Transformer 

 

Using the equivalence derived in (2.3 Mutual Inductance and transformer), 

we can replace the transformer composed of L1, L2 and M by the equivalent 

circuit shown in Fig.2- 5, we obtain the following circuit. 

 

C G

i

4 1 2

3 5  

 

It corresponds to the split inductor circuit loaded by a conductance 
2

G

a
, 

where a is the turn ratio of the ideal transformer. The coupling coefficient k is 

given by 
1 2

M
k

L L
 and the turn ratio a is given by 1

2

L
a k

L
 . The turn ratio of 

the ideal transformer corresponding to the split inductor is 
2

21

2 2

1 1

'
(1 )

k L
n k

k L k L
 

 
and the series combination of the two inductances is 

L = L1. The final equivalence is a cascade of two transformers corresponding to a 

single transformer with turn ratio 2

1

'n L
n k

a L
  . Replacing 

1 2

M
k

L L
 we obtain 

1

M
n

L
  ;  0 0

'
'² '

T

C C
Q

n G nG

 
   and 

2 2

1 0

1

(1 )
EQ

L k n G



. 

If the transformer is tightly coupled ( 1k  ), QE will be very large and the 

equivalence with the ideal transformer is always valid. The above analysis can 

also be extended to the autotransformer. 

The following table is taken from the textbook and summarizes the 

different conditions for equivalence for all circuits. 

 

  

a : 1 

ideal 

2

1
(1 )k L  

2

1
k L  
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Except for the transformer based circuits, the previous networks are step 

down. The equivalent turn ratio is always less than one. The next circuit, on the 

other hand, is step up. In fact, it is a split capacitor circuit used in reverse. 

 

 

 

L
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G

 
Fig.2- 21 Step Up Transformer 
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The input impedance is: 
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After simplification, we obtain: 
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with 1 2

1 2

C C
C

C C



. Replacing 2

0

1

LC
  , 2

1

1

1

LC
  , 

2

G

C
  and 

1

12

G

C
  , 

we obtain: 
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1 1
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2 0

1 2

2
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s s
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C s s s
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
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There are two finite zeros and 3 poles: 
2 2

1,2 1 1 1z j      and 0 0p  , 2 2

1,2 0p j       

We assume that the zeros and the poles are complex. We obtain the 

following pole & zero plot: 

 

An exact analysis (like the previous case) cannot be performed. The next 

analysis is thus valid for the high Q case. 
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Since 
1C C , we have 

0 1  and 
1  . If we assume that we operate 

only around
0 , then, if  is very small, we can write: 

  0 1 0 1

2 0 0

1

2
inZ

C l
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 and  Arg inZ  giving: 
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


 

le
j

 is the vector represented in the above figure joining the point 

0j   to the point j in the s-plane. Using the definition of 
0 and

1 , we 

obtain: 
2 2

0 1

2

0 1

1
C

C

 




  . Let 1

1 2

C
n

C C



, then 

2

C
C

n
 and 

1
1

C
C

n



and finally: 

2 2

0 1

2

0

n
 




 . So:  

 02

1

2
1

in

n
Z

C
j
 








.The final result is: 

 

2

0

1

1
in

n
Z

G
j
 








 

and for frequencies   around 0 , the circuit is equivalent to the following 

figure for the input impedance point of view. 
 

GCL

ideal

n:1

 
Fig.2- 22 Step Up equivalent circuit 

 

To obtain a complete equivalence, the voltage transfer of the circuit must 

be the one of the ideal transformer. The voltage transfer is given by: 

 
2

2 2

1 1

( )
2

s
H s

s  


 
 

Under the same previous hypotheses, we obtain: 
2

0

2 2

0 1

1
H

n



 



 and   0Arg H for frequencies around 0 .  

This approximate analysis is valid for bandlimited signals and 

for 0 10
C

Q
G


  . The bandwidth of the signals must be much smaller than 

 0 12    in order to remain always in the vicinity of the pole. 

 



 55 

The final transformer like network is the “pi” circuit. This circuit is 

commonly used in power amplifiers. We will not make a complete analysis of the 

circuit. The advantage of the “pi” circuit is that it can be used either as a step up 

or as a step down transformer. 

GC2C1

L

1

2

3  
Fig.2- 23 The Pi Network 

 

In this case also, we are going to study the input impedance and the transfer 

function. The input impedance is given by: 

2

2 2
11

3 2 1 21
1

2 2 1 2 1 2

1

1 1
( )

1 1

G
s s

C LC
Z s

G C C GC
C s s s s

Ls C s G C LC C LC C

 

 


    


 

Introducing: 1 2

1 2

C C
C

C C



; 2

0

1

LC
  ; 2

2

2

1

LC
  ; 0 2

2

C
Q

G


  and 2

1

C
N

C
 , 

the input impedance is expressed as: 

2 20
2

2
11 2

3 2 20 0 01
0

2 2

1
( )

s s
Q

Z s
NC

s s s
Q Q




  


 



  

 

This function has two finite zeroes. If 2Q is large enough, these zeroes are 

complex: 
2

20 0
1,2 2 2

2 22 4
z j

Q Q

 
    . 

It has three poles: at  and at j   . 

Using the same technique as for the split capacitor, we obtain the following 

three equations: 
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 

0

2

2 2 2

0

2
2 2 0 2

2

2

2

Q

N

Q


 

   

 
  

 

  

 

 

In this case also we introduce the variable 
2

0

2




  . The above three 

equations become: 

 

 
0

2

2 2 2

0

2

2

2 0

1
1

2
11

1

1
1

1

1
1

N

N Q
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Q




  















 
   

 






 

 

If 100 , we obtain the following equations: 

 

2 2 2

0

2

2

2 0

0

2

1
2 1

1

N

Q

N

Q N

  











 
 

  

 

Replacing the expressions of  and  in the definition of , we obtain: 
22 2

0 2

2

2

( 1) 1
( 1) 1

Q N
N

N





  
    

 
 

We also have 
2

2

2

0

1

1N







. So, when  is large, we obtain: 

 
2

2

2

1
1

N
Q N

N


     

So, if 2 10Q  , 100 . Furthermore, if 2

1
10

N
Q

N


 , 100

1N





. At 

that time: 
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 

2 2 2

0

2

2

2 0

0

2

2
1

N

Q

Q N

  













 

In order to progress in our analysis, we must resort to narrowband analysis. 

It is not possible to obtain a more general result. The following figure shows the 

pole and zero plot. 

 

 

Using the above plot, we obtain: for  around 0 

   2 2
0 2 0 2 0 2

11 2 2

1 0 1 0

1 1
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2 2
Z j

C l C l

     


 

  
   

The argument is practically . Given that 

   0 0

j
le j j j


            , the expression of the impedance becomes: 

  
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1
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2
Z j
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 


   




 
 

Replacing 
2

2 0
2

1N


 


and 

 
0

2

2
1Q N


 


, we obtain the following 

expression: 

2
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1
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


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l 

 
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Since 0 2
2

C
Q

G


 , the final result is: 

2

0

1
( )

1

N
Z j

G
j


 








 

So, from the input impedance point of view, the impedance is the same as 

the one of a parallel tank circuit loaded by a resistance of value 
2N

G
. 

The transfer function is the transfer of the following voltage divider: 

 

L

C2 G

1

2

3

 
 

The transfer function is: 

2

22

2 20
2

2 2

1

( )
1

C s G
H s

Ls s s
C s G Q







 

  


 

 

Using a narrowband approximation and operating at a frequency around 

0 , we obtain from the following pole and zero plot: 

 

SF = 
2

2  

2 

2 
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  

2 2

2 2

2 2

0 2 0 2 0 2

1
( )H j

N

 


     
  

  
 

and                                         arg ( )
2 2

H j
 

     

So for the stated conditions: 
2

1
10

N
Q

N


  and narrowband signals 

operating around 0, the pi network is equivalent to: 

 

L C G

1 2

3 4

N : 1

ideal  

Response of a tank circuit to a periodic input 

If we apply a periodic signal to a parallel RLC circuit, its response will be 

also periodic, but with harmonics that will be much reduced. Consider the 

following periodic current: 

0

0

( ) cosn

n

i t I n t




  

applied to a parallel RLC network tuned at 0. The voltage across the tank 

circuit is given by: 

  0 0 0

1

( ) ( ) cos arg ( )n

n

v t Z jn I n t Z jn  




   

If the Q of the tank circuit is larger than 10, we can use the pole zero plot 

represented in Fig.2- 24 to evaluate the impedance of the parallel RLC circuit. We 

obtain: 

0 0
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1
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and  0arg ( )
2

Z jn


    for n > 1 

along with 0( )Z j R  . So: 
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Fig.2- 24 pole zero plot for the harmonics 

 

The above relation allows us to evaluate the distortion of the waveform 

before and after filtering.  

Before filtering, the distortion coefficient is: 
2

2
2 1

100%n
before

n

I
D

I





   

 

And after filtering, we have: 
2

2
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n
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n I
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0 0zl n  

0 

2 0( 1)pl n    

1 0( 1)pl n    
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Chapter 3 
 

Non Linear Controlled Sources 

 

Communication circuits are built using passive matching networks and 

active devices. Most active devices act as voltage control current sources (BJT in 

Common Emitter or in Common Base, FET in Common Source or in Common 

Gate, etc). If the input voltage exceeds few millivolts, their transfer becomes 

highly nonlinear. In this chapter, we assume that the nonlinearity is memoriless. 

This simplifies the analysis of the different elements but it restricts the frequency 

range (in general, we cannot exceed the VHF band). 

When we analyze nonlinear circuits, we cannot make use of the 

superposition theorem. This means that an analysis made for one type of 

waveform cannot be generalized to a linear combination of these waveforms. In 

our analysis of nonlinear controlled sources, we are going to restrict our analysis 

to systems excited by sinewaves or square waves. The output signal will be 

periodic with the same fundamental frequency as the input signal. Furthermore, 

since the nonlinear element is assumed memoriless, then, if the input is a sum of 

cosines (even function), the output will have the same parity and will also be a 

sum of cosines. The extreme waveforms that we will consider are the periodic 

train of impulses and the square wave. 

The periodic train of impulses is useful in modeling very narrow current 

pulses.  

Consider the current  0

0

( )
n

i t q t nT




  . We have already encountered 

such signal in a previous course. It is periodic (period T0) and can be developed in 

Fourier series. The coefficients of the series are all equal and the Fourier series is: 

 0 0 0

0

1 10 0

( ) 1 1 2 cos
jn t jn t jn t

dc

n n n

q q
i t e e e I n t

T T

   
  



  

   
        

   
           (7) 

We remark that the fundamental and the harmonics have a peak amplitude 

equal to twice the dc current. 

The other extreme case is the current that switches between a peak value Ip 

and zero with a period T0 (square wave). 
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0 0

( ) 4 4

0 in the remaining part of the period

p

T T
I t

i t


  

 


 

In this case, the Fourier series is: 

0 0 0

2 2 2
( ) cos cos3 cos5

2 3 5

p p p pI I I I
i t t t t  

  
                     (8) 

3.1 Piecewise linear characteristic 

The first nonlinear source that we will consider is the piecewise linear one. 

It provides an adequate model for many MOSFET power amplifiers. This model 

is also encountered when we consider the effect of series resistance in many 

nonlinear amplifiers. Let us consider the following voltage controlled current 

source. 

 
Fig.3- 1 Voltage Controlled Current Source 

 

The transfer characteristic of the above controlled source is: 

 

 1 0 1 0

2

1 00

G v V v V
i

v V

 
 


 

Graphically, this relation is represented by: 

 

 
Fig.3- 2 Piecewise Linear Characteristic 

 

The voltage V0 is a threshold voltage. The slope G of the transfer function 

is a transconductance. The input signal is a sum of a biasing voltage Vb and an ac 

V0 

i2 

v1 

v1 i2 = f(v1) 
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signal v(t): 
1( ) ( )bv t V v t  . If the whole signal has a value larger than the 

threshold voltage, the transfer is incrementally linear. This means that the output 

current is expressed as: 

2( ) ( )bi t I i t   along with 
0( )b bI G V V  and ( ) ( )i t Gv t . 

We remark that the ac signals are linearly related. However, we do not have 

the same relation between the dc signals. When the whole ac signal is amplified, 

we say that the amplifier is operating in “class A”. 

Another simple analytic case occurs when the biasing voltage Vb is equal to 

the threshold voltage V0. This corresponds to “class B” operation. In this case, 

only the positive half of the ac signal is amplified and the operation is completely 

nonlinear. This implies that we cannot use an arbitrary ac voltage as input. Let us 

assume that this signal is sinusoidal: 1 0( ) cosv t V t . The output current is a half 

rectified sinewave as shown below. 

 

 
Fig.3- 3 Class B Output 

We can develop the above signal in Fourier series. The result is: 

2 0 0 0

2 2
( ) cos cos2 cos4

2 3 15

p p p pI I I I
i t t t t  

  
      

and 1pI GV . 

We remark that the dc output current is 1GV


. Its value depends on the 

amplitude of the input signal. This means that if the device is biased using a 

current source, we must adjust the value of the biasing current every time the 

input voltage changes in order to maintain the biasing voltage at the value 

Vb = V0. 

Another point worth taking into account is that the peak value of the 

fundamental current is proportional to the input voltage. If we load the output 

circuit with a parallel RLC circuit tuned at the fundamental and with a Q high 

enough so that the harmonics are practically eliminated, the output voltage will 

i2(t) 

t   

Ip = GV1 
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be: 
0 0 1 0( ) cos cos ( )

2 2 2

pRI RG RG
v t t V t v t    . This means that the output 

voltage is proportional to the input one. The amplitude of the output is 

proportional to the amplitude of the input. Thus, an amplifier biased in class B 

can be used to amplify “linearly” an amplitude modulated signal. The device 

amplifies half of the waveform and the tank circuit recovers the other half. If the 

signal is modulated (AM, VSB, SSB, QAM), we must make sure that the 

bandwidth of the parallel RLC circuit is wide enough to let the modulation pass 

without affecting it adversely. 

 If now the biasing voltage Vb is different from the threshold voltage V0, but 

the ac signal does not pass completely, we have to define a “conduction angle”. 

In this case also, we study the case of a sinewave drive 1 0( ) cosv t V t . 

 

 

 
Fig.3- 4 Class C Biasing 

 

In the above figure, we define 0x bV V V   and  1p xI G V V  . Using the 

variable 0t  , we remark that the controlled source produces an output current 

for      , i.e. for a “conduction angle” equal to 2. The angle  is given by: 

1

1

cos xV

V
   
  

 
 

V0 

i2 

v1 

Vx 

Vb 

Ip 

V1 

0t   -  
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Using the above definition of a conduction angle (2), we can give now a 

precise definition of the different classes of amplification: 

 Class A: Conduction angle = 2 = 360°. The whole sinewave passes 

through the system. 

 Class B: Conduction angle = 180°. Only the positive half of the 

sinewave is amplified. 

 Class AB: Conduction angle is such that 180 2 360    . 

 Class C: Conduction angle is such that 0 2 180   . Only a small 

tip of the sinewave is amplified.  

If we consider the voltage Vx, the class C corresponds to Vx > 0, i.e. Vb < V0 

while class AB corresponds to Vx < 0, i.e. Vb > V0. The output current is not 

sinusoidal and can be developed in Fourier series.  

The system is memoriless and since the input is an even function, the 

output current is also even and its Fourier series is then a sum of cosine functions. 

2 0

0

( ) cosn

n

i t I n t




  

The computation of the Fourier coefficients is simplified if we use the 

variable 0t  . We have: 

0 2
0

0

1
I i d

 


 

 
  

 
  and 

2
0

0

2
cosnI i n d

 
 

 

 
  

 
  

The expression of the output current in the interval  ,   is just a shifted 

sinewave: 

 2 1 0( ) cos xi t G V t V   for 0t       . So: 

 2 1

0

cos xi G V V





 
  

 
 

Replacing in the expression of the Fourier coefficients, we obtain
2
: 

0

sin cos

1 cos

pI
I

  

 





 

1

cos sin

1 cos

pI
I

  

 





 

  2

2 cos sin sin cos
2

1 1 cos

p

n

I n n n
I n

n n

   

 


 

 
 

These currents are given below (Fig.3- 5) as a function of the conduction 

angle (2). The next figure (Fig.3- 6) provides the same information, but with the 

                                                         
2
 See Appendix to Chapter 4 of textbook for details. 
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normalized voltage offset 
1

xV

V

 
 
 

 as argument. They are also plotted in your 

textbook in pp.94-95, Fig.4.2-3 and Fig.4.2-4 but with a logarithmic scale. 
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Fig.3- 5 DC, Fundamental and Second Harmonic for Sine Tips 
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Fig.3- 6 DC, Fundamental and Second Harmonic vs Normalized Voltage Offset 
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If we use Taylor approximations for the coefficients In, we can remark that 

0
0

lim 2nI

I
 for 1n  . This means that the current approaches an impulse train as 

the conduction angle becomes small. We will see that many amplifiers have this 

behavior when the input amplitude becomes large. 

3.2 Square law characteristic 
 

Another characteristic commonly used in communication circuits is the 

transfer characteristic of the FET devices. The transfer that we will study is the 

one of the N channel JFET. The obtained results can easily be extended to 

MOSFET transistors. By reversing polarities, the same results are valid for P 

channels of both types. 

The square law characteristic is given by: 
2

1
2 1

1

1 ; 0

0 ;

DSS p

p

p

v
i I V v

V

v V

 
     

 

 

 

The region corresponding to positive values of input voltages is a forbidden 

region. 

 

Vp v1

IDSS

i2

 
Fig.3- 7 Square law Characteristic 

 

As usual, we assume that the input signal is a dc biasing voltage added to 

an ac signal. 1( ) ( )bv t V v t  . The first case we will analyze is the one of a very 

small input ac voltage ( ( ) 1v t  ). We use Taylor’s approximation and we obtain: 
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2( ) ( )bi t I i t   where ( ) ( )mi t g v t . 
mg is the small signal transconductance 

at the Q point Vb, Ib. It is defined by: 

 
1 1

2
12

1

2

b b

DSS
m p

pv V v V

di I
g V v

dv V
 


    

The expression of the small signal transconductance is: 

2

2 DSS
m x

p

I
g V

V


  

x p bV V V   

For JFET, the small signal transconductance varies between 0 (for Vb = Vp) 

and a maximum value: 

0

2 DSS
m

p

I
g

V


  obtained when 0bV  . 

The voltage gain is then maximum when the biasing voltage is zero (the 

biasing current is equal to IDSS). 

If the ac signal is large, we restrict the analysis to the sinewave case 

1 0( ) cosv t V t . There are two possible cases: The ac signal is completely inside 

the square law region ( 1 1 0p b bV V V V V     ) or only the tip of the sinewave is 

amplified. 

The first case is fairly simple. Starting from: 

 
2

2
1

2 12
1 DSS

DSS p

p p

v I
i I V v

V V

 
     

 

 

and replacing 1 1 0cosbv V V t  , we obtain the following Fourier series: 

2 0 1 0 2 0cos cos2i I I t I t     

2
2 1

0 2 2

DSS
x

p

I V
I V

V

 
  

 
; 1 12

2 DSS
x

p

I
I V V

V
  ; 

2

1
2 2 2

DSS

p

I V
I

V
 .            x p bV V V  . 

The Fourier series contains only three terms: dc, fundamental and second 

harmonic. If we load the output with a parallel RLC circuit tuned at the 

fundamental, the coefficient I1 will be the only one that will produce an output. 

 

L C R
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For such system, we can define a “large signal transconductance” Gm as 

being the ratio of the peak amplitude of the fundamental of the output current 

over the peak amplitude of the input voltage. 

1

1

m

I
G

V
  

And the output ac voltage is 
0 1 0( ) ( ) cosm mv t RG v t G RV t   (The dc and 

the second harmonic are eliminated by the tank circuit). The voltage gain is: 

mA G R . In our case, the large signal transconductance is given by: 

2

2 DSS
m x

p

I
G V

V
 

 

The expression of the large signal transconductance is identical to the small 

signal one. However, the large signal transconductance applies only to a sinewave 

drive along with a high Q parallel RLC as a load. The small signal 

transconductance, on the other hand, applies to the case of an arbitrary small input 

drive. 

If now the signal has values outside the interval [Vp, 0], we will have more 

harmonics in the output current. This is due to the fact that only the tip of the 

sinewave is amplified. In this case also, we can define a conduction angle 2 with 

1

1

cos xV

V
   
  

 
. The output current is also given as a function of this conduction 

angle. 

2 0

0

( ) cosn

n

i t I n t




  

with a peak output value  
2

12

DSS
p x

p

I
I V V

V

 
   
 

. 

The coefficients are plotted in your textbook pp. 102-103, Fig.4.4-4 and 

Fig.4.4-5. The analytic formulation is provided in the appendix of chapter 4, 

p.147. 

 

3.3 Exponential characteristic 

This transfer characteristic is a good model of a bipolar junction transistor 

driven by an ideal voltage source. In order to apply it to actual circuits, we must 

make sure that the transistor is operating in normal mode. One particularity of this 

transfer characteristic is the absence of a threshold. The output current is related 

to the input voltage by 
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1
2 exps

qv
i I

kT

 
  

 
 

We have already seen that /kT q is approximately 26 mV at 300°K. 

The input voltage is 
1 ( )bv V v t  as in the previous sections. The small 

signal transfer is obtained when ( ) 1v t  . At that time, we can use a first order 

approximation for the exponential 1ze z  . We obtain: 

2

( ) ( )
exp exp exp 1b b

s s

qV qv t qV qv t
i I I

kT kT kT kT

      
        

      
 

The output current is equal to a dc current added to an ac current: 

2 ( )dci I i t   where exp b
dc s

qV
I I

kT

 
  

 
 and ( ) ( )dcqI

i t v t
kT

 . 

The ac signals are linearly related by the following small signal 

transconductance: 

dc
m

qI
g

kT
  

For example, if we consider an NPN transistor biased by a current source 

IEQ 

 

 

R

VCC

 

The voltage at the collector is given by: 

( ) Vcc ( ) Vcc ( )c C EQ mv t Ri t RI g Rv t      where 
EQ

m

qI
g

kT
  when the 

input is less than few millivolts (as in Lab #1). 

IEQ 
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If the amplitude of the input becomes larger, we cannot use the above 

approximation and the system is highly nonlinear. We consider the sinewave case 

only. So, let the input be: 

1 ( )bv V v t   where 
1 0( ) cosv t V t . 

The current is then: 1
2 0exp exp cosb

s

qV qV
i I t

kT kT


   
    

   
. 

Let 1qV
x

kT
  be the input amplitude normalized to 26 mV. The current is: 

 2 0exp exp cosb
s

qV
i I x t

kT


 
  

 
. This current has values that vary between a 

peak value Ip when cos0t = +1 and a minimum value Im when cos0t = 1. The 

peak value is: 

exp xb
p s

qV
I I e

kT

 
  

 
 

If we normalize i2 to Ip, we obtain the following:  
0cos

2( )
x t

x x

p

i e
W t

I e



   
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Fig.3- 8 Normalized current 

 

This normalized current is plotted above for different values of x. We see 

that when x is small, the current is practically sinusoidal. This character 

disappears for larger values. You can observe this behavior in lab#1. The 

following figure is a display of the output of part 2 of lab#1 for an input of 

26 mV, i.e. x = 1. 
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Fig.3- 9 Lab#2 Scope display for x = 1 

 

We can remark the typical distortion of the exponential characteristic. The 

figure is reversed with respect to Fig.3- 8 because we are displaying the voltage at 

the collector of the transistor: 
2( ) Vcc Rc ( ) Vcc Rc ( )C x pv t i t W t I    . 

Now, the function  0exp cosx t  is periodic and it can be developed in 

Fourier series. We have seen in chapter 1 that: 

 0 0 0

1

exp cos ( ) 2 ( )cosn

n

x t I x I x n t 




    

where the functions ( )nI x  are the modified Bessel functions of the first 

kind. These functions are tabulated in your textbook. Using the above relation, we 

can write: 

2 0 0

1 0

2 ( )
( ) exp ( ) 1 cos

( )

b n
s

n

qV I x
i t I I x n t

kT I x






  
    

   
  

or                               
2 0

1 0

2 ( )
( ) 1 cos

( )

n
dc

n

I x
i t I n t

I x






 
  

 
  

Idc is the dc current flowing in the output branch of the circuit. If the circuit 

is biased using a current source, its value is fixed and does not depend on the 

input voltage. However, if the circuit uses resistive biasing, its value will depend 

on that voltage. We also remark that the fundamental and the harmonics are given 

by
0

2 ( )

( )

n
dc

I x
I

I x
. This ratio of modified Bessel functions is provided in the next table 

(following page) taken from your textbook. 
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Fig.3- 10 Normalized current harmonics 
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One particularity of the modified Bessel function is that 
0

2 ( )
lim 2

( )

n

x

I x

I x
 . 

This means that for large x, the Fourier development of the current becomes the 

one of a periodic impulse train. Another point worth noting is that it is very hard 

to define a conduction angle. In fact, the current is never zero. In your textbook, 

the conduction angle is defined for a current equal to 5% of the peak value. 

If the amplifier is loaded with a high Q tank circuit tuned at the 

fundamental, the output voltage will be sinusoidal. 

 

L C R

 

 

As we did with the square law characteristic, we can define here also a 

large signal transconductance: 

1

0 1 1

1 0 0

2 ( )

( ) 2 ( ) 2 ( )
( )

( ) ( )

dc

dc
m m

I x
I

I x qI I x I x
G x g

V kT xI x xI x
    

Giving a normalized value of: 

1

0

( ) 2 ( )

( )

m

m

G x I x

g xI x
  

This function is tabulated below. 

 

This function is plotted below. 
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Fig.3- 11 Normalized large signal transconductance 

 

We can use this large signal transconductance to express the output voltage 

across the tank circuit: 

1 0( ) coso mv t G RV t  

We can remark that the gain decreases with increasing values of the input. 

This behavior can be used to stabilize the amplitude of many systems such as the 

sinusoidal oscillators. This decrease of gain can be explained by the f act that, as 

the amplitude increases, most of the power is distributed to the harmonics rather 

than to the fundamental. So, even though the output amplitude is increasing as x 

is increasing, its ratio with the input is decreasing.  

Example: 

 

Q1

C LR

Idc

V1

CE

VCC

 

Let us consider the above circuit. The tank circuit is tuned at 0 and the 

resistance R has the value of 1 k. The power supply voltage VCC has the value 

of 10 V. The current Idc has the value of 1 mA. We have: 
52

2
26

x   , giving a 

0( ) (52 )cosv t mV t  
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fundamental current 
1 1.3955 (1mA)I   . The voltage at the collector of the 

transistor is equal to  

1 0 0 0
( ) VCC cos 10V (1 kΩ 1.3955 mA)cos 10 V (1.3955 V)cos

C
v t RI t t t          

We can find the same result using transconductance calculation. The small 

signal transconductance is: 11mA
0.0385

26 mV
mg    . For 2x  , we have 

(2)
0.698m

m

G

g
  giving 1(2) 0.0268mG   . This gives: 

1 0( ) VCC ( ) cosC mv t G x RV t   
3

0( ) 10V 0.0268 1000 52 10 cosCv t t      

 0( ) 10 V (1.3936 V)cosCv t t   

We obtain practically the same result using both methods. The differences 

in the results are mainly due to rounding errors. 

If we want to increase the output without increasing the distortion, we can 

increase the biasing current (this will increase the value of the small signal 

transconductance) or we can increase the value of the load resistance (in this case 

we are limited by the value of the finite output resistance). 

3.4 Resistively biased BJT 

When the biasing current is fixed by a current source, we have seen that the 

analysis of a BJT amplifier is straightforward. The dc current is given. However, 

if we use resistors to produce the biasing, the voltage across these resistors is 

stored in capacitors and this voltage will depend on the applied ac voltage. 

 

Q1

2N3904

RE

RCR1

R2

V1

CB

CE

VCC

 
Fig.3- 12 Resistively biased BJT 
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The above figure shows a resistively biased BJT. By using Thevenin 

theorem, we can transform the base circuit as follows: 

 

Q1

2N3904

RE

RC

V1

CB

CE

VCC

VCC

VBB

RB

3

2

 
Fig.3- 13 Base equivalent circuit 

 

where 1 2

1 2

B

R R
R

R R



 and 2

1 2

BB CC

R
V V

R R



. 

The above circuit is shown with a resistive load; however, the load RC can 

be replaced by a parallel tank circuit. In the analysis of the circuit, we assume that 

the transistor is operating in the normal mode. So, the emitter current is related 

with the base emitter voltage by the usual exponential characteristic: 

exp BE
E ES

qv
i I

kT

 
  

 
 

and C Ei i along with (1 )
1

E
B E

i
i i


  


. 

If the base emitter voltage is only a dc one (no signal), the dc current 

flowing through the emitter is given by: 

(1 )

BB dcQ

EQ

E B

V V
I

R R




 
                                          (9) 

The voltage dcQ BEQV v  is the dc voltage that appears across the series 

connection of the two capacitors CB and CE (the ac voltage source at the input is 

shorted to ground). Its value is also related to the current flowing in the transistor 

by: 
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ln
EQ

dcQ

ES

IkT
V

q I
                                               (10) 

For a discrete transistor biased with a current between 0.1 to 10 mA, the 

value of 
dcQV remains around 650 mV. If we want to compute its value, we can use 

the iterative method shown in chapter 1. 

Now, if we apply an ac voltage at the input (
1 0( ) cosv t V t ), the value of 

the dc voltage changes from 
dcQV  to 

dcV  and this will entail a change in the dc 

current from IEQ to IE0. The new equations are now: 

1 0( ) cosBE dcv t V V t   

giving 

 1
0 0( ) exp exp cos exp exp cosdc dc

E ES ES

qV qV qV
i t I t I x t

kT kT kT
 

     
      

     
 

Using the Fourier series development seen in the previous section, we 

obtain: 

0 0

1 0

2 ( )
( ) exp ( ) 1 cos

( )

dc n
E ES

n

qV I x
i t I I x n t

kT I x






  
    

   
  

or 
0 0

1 0

2 ( )
( ) 1 cos

( )

n
E E

n

I x
i t I n t

I x






 
  

 
  

We can now rewrite equations (9) and (10) for a sinewave input as: 

 
0

(1 )

BB dc
E

E B

V V
I

R R




 
 (11) 

and  

 0 0exp ( )dc
E ES

qV
I I I x

kT

 
  

 
 (12) 

Since Vdc is different from VdcQ, let us write: 

dc dcQV V V   

If we replace in (11), we obtain: 

0
(1 ) (1 )

BB dcQ

E

E B E B

V V V
I

R R R R 

 
 

   
 

0 1
(1 )

E EQ EQ

E B

V V
I I I

R R V

  
    

   
                    (13) 

where  (1 )E B EQV R R I    . 

Equation (12) on the other hand produces: 

0 0exp ( )E EQ

q V
I I I x

kT

 
  

 
                                       (14) 
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Equating (13) and (14), we obtain: 

01 exp ( )
V q V

I x
V kT

   
    

  
 

The above equation does not have an analytic solution. However, it is 

shown in the textbook, that, if V is larger than 520 mV, we can safely neglect the 

term 
V

V


 in the above equation. We finally get: 

0ln ( )
kT

V I x
q

   

Now, we can express the relationship that exists between the two dc 

currents: 

0
0

ln ( )
1E EQ

I x
I I

qV

kT


 
 

  
  
    

 

So, if x is small and V large, we can safely assume that the two currents 

are the same. However, if the design is not very good (small V), the two currents 

will be quite different when the amplitude of the input signal increases. 

If we want to neglect the effect of the input drive and have practically 

IE0 = IEQ within 5%, we must have: 

020ln ( )
qV

I x
kT

 
  
 

 

This relation is shown in the next figure. 

 

 
Fig.3- 14 Condition on V  
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For example, if the input signal has a peak value of 260 mV, the voltage V 

must be larger than 4 V. 

3.5 Differential Characteristic 

In our collection of nonlinearities, the differential characteristic is one of 

the most important. This circuit is commonly used in integrated circuits. We will 

see later that it is the basic building block of the double balanced mixer-

modulator. We also find it in the implementation of IF amplifiers used in FM 

receivers. This is due to the fact that it is a very good amplitude limiter. 

 

Q1 Q2

V1
V2

 
Fig.3- 15 Differential Amplifier 

In the circuit of Fig.3- 15, the current Ik is divided between the two 

transistors. This means that any value of the input voltages, the current in each 

transistor will never exceed the value of Ik. The node equation at the emitter of the 

two transistors is: 

1 2 ki i I   

This implies that the variations of the two currents are opposite. When one 

increases, the other one decreases by the same amount. 

We assume that the two transistors are identical. The basic equations are: 

1
1 exp BE

S

qv
i I

kT

 
  

 
 and 2

2 exp BE
S

qv
i I

kT

 
  

 
 

So:    1
1 2 1 2

2

exp expBE BE

i q q
v v v v

i kT kT

   
      

   
 

Let us define:  1 2

q
z v v

kT
  . The emitter currents become: 

kI  

1Ci  
2Ci  

1i  2i  
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1
1

k

z

I
i

e



 and 

2
1

k

z

I
i

e



 

The above expressions do not show clearly the fact that when one current 

increases by a given amount, the other decreases by exactly the same value. The 

average value for both currents is 
2

kI
. Let i be a variation around this value. 

1
2

kI
i i   and 

2
2

kI
i i  . The variation of current is: 

tanh
2 2

kI z
i

 
  

 
 and finally the two currents can be expressed as: 

1 1 tanh
2 2

kI z
i

  
    

  
 and 

2 1 tanh
2 2

kI z
i

  
    

  
. 
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Fig.3- 16 Emitter currents 

The above figure shows the variation of the two currents as a function of 

the normalized input. It shows clearly the opposite variation of the two currents. 

Another point worth noticing is the fact that when the input is sinusoidal with 

large amplitude, the output becomes practically a square wave.  

If the input signal has a small amplitude, we can use a first order Taylor 

series approximation of the hyperbolic tangent ( tanh
2 2

z z
 ) as follows: 
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 1 1 21
2 2 2 2

k k inI z I g
i v v

 
     

 
 where 

2
k

in

I
q

g
kT

 
 
   is the input 

conductance of a transistor biased by an emitter current equal to 
2

kI
 (seen from 

the emitter). The other current is  2 1 21
2 2 2 2

k k inI z I g
i v v

 
     

 
. 

Since the output current is iCk = ik, we can define the small signal 

transconductance as: 

2

in
m

g
g


  

So, we can remark that the gain of the differential pair is half of the gain of 

a single ended transistor biased by an emitter current equal to 
2

kI
.  

If 
1 2 1 0( ) cosv v V t  , we can develop the current i in Fourier series. 

1
0 0cos cos

qV
z t x t

kT
    giving: 

0tanh cos
2 2

kI x
i t

 
  

 
                                      (15) 

 

-2π -9π/5 -8π/5 -7π/5 -6π/5 -π -4π/5 -3π/5 -2π/5 -π/5 π/5 2π/5 3π/5 4π/5 π 6π/5 7π/5 8π/5 9π/5 2π

0
t

 

i

x = 1
   ↓

x = 5 

x = ∞

   
2
k

I

2
k

I


 

Fig.3- 17 Sketch of i for several values of x 

The above sketch shows the shape of the current i for several values of x. It 

goes from a sinusoidal shape for small input to a square wave when the input 

becomes large. Equation (15) represents a periodic waveform. Its Fourier series is 

given by: 

 

2 1 0

1

2 1 0

1

cos(2 1)

cos(2 1)

n

n

k n

n

i I n t

I a x n t

















 

 




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The coefficients are tabulated in p.117 of the textbook. This table is 

reproduced below. 

 
Fig.3- 18 Normalized harmonics 

The last row of the above table represents in fact the Fourier series 

development of a square wave having zero dc and peak amplitude of ½. 

If we use a tank circuit as a load for one of the transistors, we can use the 

large signal transconductance. This transconductance is defined as: 

 11 1 1

1

( ) ( ) 4 ( )
( ) 2k

m in m

I a xI a x a x
G x g g

V x xkT
x

q


   

 
 
 

 

It is represented in the figure below. 

 
Fig.3- 19 Large signal transconductance vs x 

 

Here again, we see the decrease of the gain as the input amplitude 

increases. 
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3.6 Effect of series resistance 

When a resistance R is connected in series with a nonlinear element, it has 

the net effect of making the characteristics practically (piecewise) linear. In this 

section, we are going to study the effect of the resistance on the exponential 

characteristics. The same analysis can be repeated on other nonlinearities such as 

the square law. 

Consider the following circuit: 

 
Q1

Rv
1

 
Fig.3- 20 NPN transistor with series resistance in the emitter 

 

From Fig.3- 20, we can write: 

1 BE Ev v Ri   

and the transistor is described by the exponential characteristic: 

exp BE
E ES

qv
i I

kT

 
  

 
 or ln E

BE

ES

kT i
v

q I

 
  

 
. This gives: 

1 ln E
E

ES

kT i
v Ri

q I

 
  

 
 

We can define a small signal dynamic resistance as: 

1'

E dc

in in

E dci I

dv kT
r R r R

di qI


      

The output current being the collector current, the small signal 

transconductance of the compound device is: 

'
' 1

in
m

in in in

g
g

r r R g R

  
  

 
 

1
in

in

g
r

 is the small signal dynamic conductance (seen from the emitter). 

We can remark that the small signal gain decreases with increasing R. To show 

the effect of piecewise linearization, let us introduce the dc current flowing in the 

emitter circuit. 
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1 ln ln lnE dc dc
E E

ES dc ES dc

kT i I kT I kT i
v Ri Ri

q I I q I q I

     
         

     
 

Let 
0 ln E

ES

kT i
V

q I

 
  

 
 and ( ) (1 )co dc in in

kT
V I r R g R

q
    , the above 

expression can be evaluated as: 

1 0

ln

1 1

E

dcin E

co in dc in

i
Iv V g R i

V g R I g R

 
        

   
                            (16) 

Two extreme cases for equation (16) are of interest. The first one 

corresponds to 0ing R  . This is the case of the exponential characteristics seen in 

section 3.3. The other extreme case corresponds to 
ing R  . In this case, the 

second term in the above expression will be zero and we obtain: 

1 0 E

co dc

v V i

V I


  for 

1 0v V  and of course, no current can flow if 
1 0v V . In this 

case, R >> rin and Vco = RIdc. Finally, the piecewise linear characteristic is the one 

of an ideal diode in series with a battery of value V0 and a resistance R. The base 

emitter is replaced by the following circuit: 

Ideal

R

Vo

v
1

 

The current flowing in the above circuit is of course the emitter current. 

Consider the following circuit: 

Q1

R

Idc

v(t)

ZL

VCC

CE
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It can be analyzed using the following equivalent circuit: 

 

v(t)

CE

Idc

R

Ideal

Vo

ZL

VCC

i E

 

 

The capacitor is going to develop a biasing voltage Vb that will be added to 

the input ac voltage 
1 0( ) cosv t V t . The average value of the emitter current is 

fixed by the dc current source. So, we will have the following situation: 

 

 
Fig.3- 21 Input transfer 

The voltage applied to the resistance in series with the base emitter junction 

is: 1 1 0cosbv V V t  . From the above figure, it is clear that if the amplitude of 

the ac input voltage satisfies: 1 dc coV RI V  , we are in the class A and the emitter 

current satisfies: 

1 1
0 0 1 0 0cos cos 1 cosE dc dc

co

V V
i I t I I t I t

R V
  

 
      

 
 

 

When 1 coV V , we leave the class A and the current becomes a periodic 

train of sinewave tips as seen in section 3.1. The dc value of the current is fixed 

by the biasing network. However, since the current is now asymmetrical, the 

voltage across the capacitor is going to move in order to maintain the current at its 

biasing value Idc.  

0 1 0 2 0cos cos2Ei I I t I t      

From the equations developed in section 3.1, we have: 

V0 

iE 

v1 

Idc 

Slope 1/R 

Vb 

Ei  
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1
0

sin cos

1 cos

x
dc

V V
I I

R

  

 

 
 


 

1
1

cos sin

1 cos

xV V
I

R

  

 

 



 

while 1

1

cos xV

V
   and 

0x bV V V  . 

Using the fact that  1 1 1 cosxV V V    , we can relate 1

co

V
V

to  by: 

1

sin cosco

V

V



  



                                      (17) 

and  

1

0

sin cos

sin cos

I

I

  

  





                                          (18) 

The above two equations form a parametric evaluation of the relation 

between 1

dc

I
I

and 1

co

V
V

for 
1 coV V and using the result of class A also 

( 1 1

dc co

I V
I V

 ), we can plot the following curve: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 ginR = 0 

ginR = 

1

dc

I

I

1

co

V

V

 

Fig.3- 22 Normalized fundamental vs. normalized input voltage 

In the above graph, two curves are drawn: the one corresponding to 

ing R  and the one corresponding to 0ing R  . The second one is just the curve 
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expressing 1

0

2 ( )
( )

I x
I x

vs. x. This is due to the fact that 
co in dc

kT
V r I

q
  in this 

case, so 1 1

co

V qV
x

V kT
  . We can use the above set for any value of R by 

interpolating between the two curves. 

If the load of the transistor is a high Q tank circuit, here again, we can use 

the concept of large signal transconductance. 

1

1 1

11 1

'dcco dc
m m

dc co

co

I
II I V I

G g
VV I V V

V

 
 
 
   
 
 
 

 

 
' dc dc

m

co in dc

I I
g

V r R I

 
 


is the small signal transconductance evaluated at 

the Q point. We can use the previous set of curves (Fig.3- 22) to draw the curve 

giving 
'

m

m

G
g

 for different values of 1

co

V
V

. This can be done for the two cases: 

ing R  and 0ing R  .  

 

 
Fig.3- 23 Normalized large signal transconductance vs. normalized input voltage 

We see here again the decrease of the gain as the distortion of the output 

current increases. Consider the following circuit: 
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2.6mA 

R

ac short

V1

130mV 

10MHz 

0Deg 

C 2k  L

VCC

10V

 

The tank circuit composed of L and C is tuned a 10 MHz. We assume that 

1  . We will compute the output voltage for the three cases: R = 10 , R = 0 

and R = 100 . 

First, we compute ing and 
inr . 

Idc = 2.6 mA gives 12.6
0.1

26

dc
in

qI mA
g

kT mV

    , so 10inr   . 

 

Case R = 10 : 1ing R  . We must compute Vco. 

     2.6 20 52co dc inV I r R mA mV      . 

1 130
2.5

52co

V

V
  . From the curves in Fig.3- 22, we read 1 1.5

dc

I

I
 . The 

fundamental of the output current is then:  1 1.5 2.6 3.9I mA mA   . So, the 

voltage at the collector of the transistor is: 

         7 7( ) 10 2 3.9 cos 2 10 10 7.8 cos 2 10ov t V k mA t V V t        

 

Case R = 0: 0ing R  . We have 26coV mV . We obtain: 1 130
5

26co

V

V
  giving 

1 1.8
dc

I

I
  from the curve 0ing R  . In this case, the output voltage is: 

   7( ) 10 9.36 cos 2 10ov t V V t   

 

Case R = 100 . 10ing R  . This value is quite large.  
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    2.6 10 100 286coV mA mV     . In this case, we have 
1 coV V . So, 

1 1

130
' 1.18

110
m

mV
I g V mA  


. The output voltage is: 

   7( ) 10 2.36 cos 2 10ov t V t   

If we double the input voltage (V1 = 260 mV), we will still have 
1 coV V . 

The amplification will still be linear. 

3.7 Clamp biased FET 

We have seen that N channel junction FET must be biased with a negative 

VGSQ to keep the gate to channel diode reverse biased. One technique for 

automatically achieving this is to use clamp biasing. 

Consider the following circuit: 

 
Q1

      



        

ideal

 

 

The circuit is equivalent to the one on the right. We assume that the time 

constant of the RC network satisfies 
0

2
G GR C




 . In this case, the capacitor will 

charge to the peak value of the input sinewave (VC = V1) and it will not discharge. 

So, the voltage vGS will satisfy:  

 1 0 1 0cos cos 1GS Cv V t V V t      

The above equation show clearly that the voltage vGS is going to be 

clamped to zero and it will remain negative. If 1
2

pV
V  , the FET will be operated 

completely in the square region. If 1
2

pV
V  , the drain current will consist of 

squared sine tips of peak value p DSSI I and it will contain more harmonics. 

0 1 0 2 0 3 0cos cos2 cos3Di I I t I t I t        

The following two curves provide the values of the first components of the 

current along with the normalized transconductance. 

 

1 0cosV t  

GR  

GC  
GC  

GR  CV  

G  

S  
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Fig.3- 24 Normalized Fourier Coefficients 

 

 
Fig.3- 25 Large signal transconductance 

The large signal transconductance is normalized to 0

2 DSS
m

p

I
g

V


 . 
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For example, consider an FET with IDSS = 6 mA and Vp = 4 V. If we apply 

an input voltage 
0( ) (2 )cosv t V t , we have 1 0.5

p

V
V


 . From the curve in 

Fig.3- 24, the normalized fundamental current is 1 0.5
DSS

I
I

 , giving a 

fundamental current 
0(3 )cosmA t . 

3.8 Non linear loading of tank circuits 

It is quite common that the input of the different nonlinear controlled 

sources is tuned using a parallel tank circuit. If the Q of the tank circuit is high 

enough, the voltage across the circuit will be sinusoidal, even if the current 

absorbed by the nonlinear load is not. Since all the harmonics produced by the 

load will be absorbed (shorted to ground) by the tank circuit, the nonlinear load 

will behave like an equivalent conductance GNL given by: 

1

1

NL

I
G

V
 where I1 is the amplitude of the fundamental current absorbed by 

the load and V1 is the amplitude of the sinusoidal voltage across the load. 

 

Common base equivalent input: 

Let us consider the following circuit: 

 
Q1

IdcCL

ac short

R1

 
Fig.3- 26 Tank circuit at emitter 

We assume that 2

0
1

LC
  and that the Q of the tank circuit is high enough 

in order to keep the voltage across it sinusoidal. We have seen that the emitter 

current of the transistor is given by: 

0

1 0

2 ( )
( ) 1 cos

( )

n
E dc

n

I x
i t I n t

I x






 
  

 
  

where 1qV
x

kT
  and 1 0cosV t  is the sinusoidal voltage appearing across the 

tank circuit. 

0cosI t  
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The fundamental current has an amplitude: 1
1

0

2 ( )

( )
dc

I x
I I

I x
  and the base 

emitter junction will behave like a conductance: 

1 1 1

1 1 0 0

2 ( ) 2 ( ) ( )

( ) ( )

dc dc m
NL

I I I x qI I x G x
G

V V I x kT xI x 
     

We must verify that the Q is high enough: 

0

1

10
NL

C
Q

G G


 


 where 

1

1

1
G

R
  

Common emitter equivalent input: 

If we consider now the base emitter junction, but seen from the base, the 

current is smaller (1 )B Ei i  . So, the conductance is: 

( ) ( )
(1 ) m m

NL

G x G x
G 

 
    

Clamp biased FET equivalent input: 

 

 
Q1

R1
L

C

 

The current flowing in the gate channel diode consists of very short 

impulses occurring at each peak of the sinewave 1 0cosV t . This means that we 

can develop this gate current in the following Fourier series: 

0

1

1 2 cosG dc

n

i I n t




 
  

 
  

Since no dc current can flow through the capacitor, this dc current is going 

to flow through the resistor RG. The dc voltage across RG is the peak value V1 of 

the ac voltage stored in the capacitor CG. So: 

1
dc

G

V
I

R
  and the amplitude of the fundamental current in this diode is then: 

12
G

V

R
.  There is also an ac current of amplitude 1

G

V

R
 at 0 flowing in this 

resistance since there is an ac voltage 1 0cosV t  across it. The total ac current at 

0cosI t  

GC  

GR  

1V  

GC  1 0cosV t  
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0 flowing inside the circuit is then the sum of the two currents. Finally, the 

equivalent conductance across the tank circuit is: 

1

1

3

3G
NL

G

V

R
G

V R
   


