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Chapter 4 

Sinusoidal Oscillators 

 

Sinewave generators are commonly used in communication circuits. We 

find them in both transmitters and receivers. There exist many types of oscillators: 

multivibrators, relaxation oscillators, etc. Most of them generate waveforms that 

are not sinusoidal. In this chapter, we are going to analyze only the ones that can 

generate sinewaves. 

4.1 Basic definitions 

A sinusoidal oscillator is a one port device that produces a sinewave. The 

output signal is then: 

( )0( ) cosx t A tω θ= +  

It is a simple matter to show that the above signal satisfies the differential 

equation 2

0( ) ( ) 0x t x tω′′ + = . This equation represents a harmonic oscillator such as 

the small amplitude pendulum in vacuum, a mass and spring without friction, etc. 

In our case, we are interested in electrical (RC and LC) oscillators and also in 

electromechanical ones (crystal).  

The oscillators that we will study are usually composed of a passive 

network that is used to set the frequency of oscillation and an amplifier that is 

used to compensate for the losses in the passive network. 

 

 

Fig. 4- 1 Typical sinusoidal oscillator 

The amplifier is assumed to be memoriless. Any memory element in the 

real amplifier will be integrated inside the passive network. The above network 

can be analyzed using linear techniques. However, such analysis would 

correspond only at the conditions that set the start of oscillations. When the 

amplitude of the sinewave is small, we have seen that all of the active devices can 

be considered as linear (incrementally linear). However, as the amplitude 

 

( )H s  K X 



increases, this assumption is no longer true. We then have to resort to nonlinear 

analysis. 

A general nonlinear analysis of oscillators would lead us to the study of 

nonlinear differential equations. This is an extremely complex method of analysis. 

In general, we use much simpler techniques.  

A general study of a sinusoidal oscillator starts in general by a small signal 

analysis (linear). This step allows us to compute the frequency of oscillation and 

also the conditions on the gain of the amplifier in order for the oscillations to start. 

The second step takes into consideration the nonlinearities and studies 

conditions for setting the amplitude of the sinewave at a predetermined level. We 

can also try to determine the distortion of the waveform at this point of analysis. 

4.2 Linear feedback analysis 

The block diagram shown in Fig. 4- 1 suggests the following closed loop: 

 
Fig. 4- 2 Closed loop 

The block diagram shown in Fig. 4- 2 is equivalent to the one of Fig. 4- 1 if 

the input signal vi is zero. Using results from linear feedback theory, we can 

define an open loop gain: 

( ) ( )LA s KH s=                                                (1) 

and a closed loop gain: 

( ) ( )
( )

1 ( ) 1 ( )

L

L

A s KH s
G s

A s KH s
= =

− −
                                     (2) 

In our analysis, we are going to consider only passive networks that can be 

built using lumped elements. This means that the methods of analysis cannot be 

used for studying oscillators implemented using transmission lines or delays, etc. 

In the case of lumped elements, the transfer function of the passive network is a 

ratio of polynomials. 

( )
( )

( )

N s
H s

D s
=                                                   (3) 

K 
 

( )H s  iv  
ov  

ε  

+  

+  



where N(s) and D(s) are polynomials. It is clear that the roots of N(s) are 

the zeros of the open loop gain AL(s) and the roots of D(s) are the poles of the 

open loop gain AL(s). Replacing (3) in (2) provides: 

( )
( )

( ) ( )

KN s
G s

D s KN s
=

−
 

The above equation can be written as: 

[ ] 0( ) ( ) ( ) ( ) ( )iD s KN s v s KN s v s− =                                    (4) 

Assimilating the operator s to the differentiation operator, we can see from 

(4) that we can have an output vo different from zero when vi is zero if the 

following constant coefficient differential equation is satisfied: 

[ ] 0( ) ( ) ( ) 0D s KN s v s− =                                             (5) 

If the roots of ( ) ( )D s KN s−  are distinct, the general solution of the 

differential equation (5) is: 

( )0

1

( ) exp ( )
n

k k

k

v t C c t u t
=

=∑                                               (6) 

where ck are the roots of (5). They are the closed loop gain poles and Ck are 

coefficients that depend on the initial conditions. 

Since the passive network is built using real components (R, L, C and M), 

its transfer function is a ratio of polynomial with real coefficients. If we want to 

have as a solution a sinewave, we must have two closed loop poles on the jω axis 

at 0jω±  and we have to make sure that the other closed loop poles will not appear 

in the signal vo(t). This can theoretically be achieved by setting the initial 

coefficients such that 0kC =  except for the selected pair of poles. However, this 

solution is not realistic. A much more sensible solution is to make sure that all the 

unwanted poles are “stable”, i.e. with a negative real part. So, if we wait a while, 

all the unwanted signals will decay and only the required signal will remain. 

From the above discussion, we observe that the position of the closed loop poles 

is fundamental. These closed loop poles are the solutions of the equation: 

( ) ( ) 0D s KN s− =                                                      (7) 

This equation depends on the gain K. So, the position of the closed loop 

poles will also depend on the gain K. their locus in the s-plane is called the “root 

locus”. There are some general rules for drawing a root locus. You will learn 

them in control courses. However, we can state some of them. 

When K = 0, equation (7) becomes D(s) = 0. This means that the closed 

loop poles are on the open loop poles for small gains. When K becomes very 

large, equation (7) is practically N(s) = 0. So, the closed loop poles will be on the 



open loop zeroes. For some value of the gain, the root locus will cross the jω axis 

at the frequency ω0.  

There are some minimal requirements on the transfer function H(s) so that 

there can be oscillations and therefore closed loop poles on the jω axis. It is 

shown that the transfer function must have at least two poles and one zero. 

Consider the following example: 
2

2
( )

s cs d
H s

s as b

+ +=
+ +

 

Equation (7) becomes: 
2(1 ) ( ) 0K s a Kc s b Kd− + − + − =  

which corresponds to the differential equation: 

( ) ( ) ( )0 0 01 0K v a Kc v b Kd v′′ ′− + − + − =  

In order to have oscillations, we must have: 

0a Kc− =  and 0
1

b Kd

K

− >
−

. If these two conditions are satisfied, the 

equation becomes: 

2 2

0 0s ω+ =  where 
0

1

b Kd

K
ω −=

−
 

If we have one pair of closed loop poles on the jω axis, this implies that 

1 ( ) 0LA s− =  for s = jω0. In other words: 

0( ) 1LA jω =                                                (8) 

The above relation can be expressed as: 

0( ) 1LA jω =  and [ ]0arg ( ) 0 mod 2LA jω π=                (9) 

Equations (8) and (9) are necessary conditions. They are known as the 

“Barkhausen Conditions”. Equation (9) simply means that, if we look at the 

diagram of Fig. 4- 1 and if we consider signals on the right and on the left of the 

point X, they are identical. There exists a sinewave which travels around the loop 

with no attenuation and no phase shift. Of course, in order to have a good 

sinewave oscillator, this condition should exist only for one single frequency. 

Sometimes, it is easier to use the real and imaginary part of the open loop transfer 

function. 

Example: 

Consider the open loop gain: 

( )3
( )

1
L

K
A s

RCs
=

+
 



( )
( )
( )

( )
( )

2 2 2

2 3 3
2 2

1 3 ( ) 3 ( )
( )

1 1 ( ) 1 ( )
L

K RC KRC RCK
A j j

jRC RC RC

ω ω ω
ω

ω ω ω

− −
= = −

+ + +
 

The application of the Barkhausen conditions provides: 

[ ]0Im ( ) 0LA ω =  gives 
0

3

RC
ω =  and [ ]0Re ( ) 1LA jω = gives 8K = −  

 This circuit can be realized by cascading three first order lowpass circuits 

separated by buffers. 

 

R

C

R

C

R

C

R1

R2

 

The gain K is given by the ration of the two resistances R1 and R2. 

1

2

R
K

R
= −  

In order to neglect the load on the last RC stage, we assume that the 

resistance R2 is very large. If it is impossible to achieve this, we must add a high 

input impedance buffer before. 

The previous example shows that the value of the gain K is critical. If its 

absolute value is smaller than 8, the closed loop poles will be in the left side of 

the s-plane and the oscillation will not start. If the gain is too large, they will be in 

the right half, the sinewave envelop will be a growing exponential and the 

amplitude will increase until it will be limited by the amplifiers nonlinearities. So, 

we need an infinite precision in order to set the conditions of oscillation.  

 Even if we are able to set exactly the gain, the linear theory cannot predict 

the amplitude of the sinewave. Theoretically, this amplitude is set by the initial 

conditions. These conditions cannot be predicted for general circuits. So, this 

linear analysis is used only to determine the frequency of oscillations along with 

conditions for starting these oscillations. 



 

4.3 General conditions for oscillator design 

 There are certain conditions that must be satisfied in order to design a 

practical oscillator. First, the oscillator must always start when we turn the power 

on. Next, the amplitude of the waveform should be under our control and not set 

by random initial conditions. We must also have good control on the distortion 

and finally, the frequency of oscillation should not depend on parasitic elements 

and on environmental conditions. 

 In general, the analysis of an oscillator should be performed in two steps. 

 

• We do a linear small signal analysis and we must set the selected closed 

loop poles on the right half of the complex plane (not to far from the jω 

axis). This will ensure that the oscillator will start what ever initial 

conditions. Even if the memory elements (capacitances, inductances, etc.) 

have zero initial conditions, the existence of thermal noise will ensure that 

the oscillation will start. The fact that the closed loop poles are on the right 

side implies that the waveform will have an exponentially growing envelop.  

 

Fig. 4- 3 LC oscillator starting 

 

Fig. 4- 3 shows the initial time of an LC oscillator (the one used in lab #4). 

It takes practically 100 µs for the amplitude to stabilize at its final value. 

• There should exist a mechanism of amplitude control that will fix the 

amplitude at some pre-selected value. This mechanism can be an automatic 

gain control or we can use the nonlinearities of the amplifying device to 

push the closed loop poles back on the jω axis. 

 



An instructive example is the Wien bridge oscillator of lab #3. 
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Fig. 4- 4 Wien Bridge Oscillator 

 It is shown in lab #3 that the open loop transfer function of the Wien bridge 

oscillator is: 
2 2

0 0

2 2

0 0

( )
3 3

L

A s s
A s

s s

δω ω
δ ω ω

− − +=
+ + +

 

Where 
0

1

RC
ω = and 3 (2 ) 1R Rδ= + . The previous method of analysis 

(Barkhausen conditions) gives that the circuit will oscillate at ω0 if the gain of the 

amplifier is 
min

9
3A

δ
= + . If the gain is higher than minA , the closed loop poles will 

be in the right half of the s-plane. 

 If we use an op-amp, its differential gain is very high. So, minA A>> . In fact, 

from what we have learned earlier, when the gain is very large, the closed loop 

poles will be practically on top of the open loop zeroes. These zeroes are: 
2

1,2 0 0

4

2 2
z j

δ δω ω−= ±  

 So, if we want the oscillator to start, we must put the closed loop poles on 

the right half of the s-plane. This implies that the open loop zeroes must also have 

a real part that is positive. We must have 0δ >  or R3 > 2R1. However, the value 

of δ must not be too large. If δ > 2, the open loop zeroes will be real and the 

oscillations will not start. In the lab experiment, you will design an oscillator with 

δ = 1. In this case, we will have exponentially growing oscillations at the 



frequency of 0

3

2
ω . This waveform will be limited by the saturation of the op-

amp and the waveform displayed by the oscilloscope will be: 

 

 

Fig. 4- 5 Output waveform for δ = 1 

 A better signal will be obtain in the second part of lab #3 by the use of a 

voltage controlled resistance in place of R1. When the system is operating 

correctly, the value of δ will be very close to zero and the sinewave will be very 

pure. 
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Fig. 4- 6 AGC using FET 

 

 



 

Fig. 4- 7 Output waveform 

4.4 LC oscillators 

 LC oscillators use a parallel RLC circuit along with a transformer as 

passive network. The amplifier is one of the nonlinear controlled sources studied 

in chapter 3. So, the basic circuit is shown below (Fig. 4- 8). Gin represents the 

load presented by the input of the active device at the oscillating frequency. 
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Fig. 4- 8 Typical LC oscillator 

  

 If we analyze the response of the passive network, we remark that the 

parallel RLC circuit has a zero phase response at the resonant frequency and at 

any other frequency it is either capacitive or inductive. So, from the phase 

condition of the Barkhausen relations, the frequency of oscillation will be the 

resonant frequency: 

0

1

LC
ω =  

 



 If the total Q of the tank circuit is larger or equal to ten, the voltage at the 

input of the active device will be sinusoidal, even if the output current is not. This 

means that the only component of the current that will produce a voltage across 

the tank circuit is the fundamental. For all voltage controlled current sources, this 

current is given by: 

1 0 1 0cos cosmI t G V tω ω=  

Gm is the large signal transconductance and V1cosω0t is the input voltage 

across the input of the active device. This means that the voltage across the tank 

circuit is: 

1 1
0 02 2

( ) cos cosm
L

L in L in

I G V
v t t t

G n G G n G
ω ω= =

+ +
 

At the output of the ideal transformer, we obtain the input voltage V1cosω0t, 

and this voltage is equal to nvL(t). So, we obtain the equation: 

2
1m

L in

nG

G n G
=

+
 or L

m in

G
G nG

n
= +  

If we divide the above relation by the small signal transconductance, we 

obtain: 

m L in

m m m

G G nG

g ng g
= +                                           (10) 

Equation (10) must be satisfied for some value of the input. We have seen 

that the ratio m

m

G
g

depends on the amplitude V1 and that it decreases as the 

amplitude increases. Furthermore, for very small amplitude, this ratio is equal to 

one. This means that the small signal transconductance must 

satisfy L
in in

G
g nG

n
≥ + for the oscillator to start. 

 

Fig. 4- 9 Typical large signal transconductance 
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Fig. 4- 9 shows a typical ratio of large to small signal transconductance. It 

also gives the value of the amplitude of the oscillation. From this curve, we can 

see how the oscillation starts and how it stabilizes. At start up, the amplitude is 

very small, the gain is larger than required. The closed loop poles will be situated 

in the right half of the s-plane and we will have exponentially increasing 

oscillations. When the amplitude reaches the required one, equation (10) will be 

satisfied and this means that the poles will be on the jω axis. Any further increase 

of the amplitude will decrease the gain and the poles will move to the left half of 

the s-plane and at that time the amplitude will decrease. So, we see that the 

amplitude will stabilize at the amplitude for which equation (10) is satisfied. An 

example of such oscillator is the Colpitts oscillator of lab #4. 

Let us consider the following circuit: The transistors have β = 100. 

 

Fig. 4- 10 Differential amplifier Colpitts oscillator 

   

It consists of an oscillator built around a differential amplifier. The 

coupling between the output (collector of transistor Q2) and the input is done 

using a split capacitor transformer-like network. As seen in chapter 2, if we 

assume that ' 100T EnQ Q > and 10EQ > , we can transform the above circuit into 

the one shown below.  



CL

1  :  n

 

Fig. 4- 11 Equivalent circuit 

  

The capacitance C is: 
1 2

2.25 nF
1 2

C C
C

C C
= =

+
 so the resonant frequency is: 

0

1
1 MHz

2
f

LCπ
= ≈ . The input admittance of the transistor is: 

( )m
in

G x
G

β
=  as seen in chapter 3. We need the value of x in order to 

determine the value of the transconductance. However, we know that it is 

bounded by the value of the small signal one. In order to determine the small 

signal transconductance, we need to compute the biasing current.  

0.75
2 mA

(2 ) 3

EE
k

V
I

Rα
−= ≈

−
 

 

 The small signal transconductance is:  

2 12 mA
1.9 10

4 4 26 mV

k
m

qI
g

kT
α − −= = = × Ω

×
so the small signal input 

conductance is: gin = 1.9×10
−4

 Ω−1
. 

The turn ratio is: 
1

0.0625
1 2

C
n

C C
= =

+
. We can now bound the value of 

QT' and QE. 

0
' 2T

C
Q

n G

ω= . The conductance G is the sum of the input conductance and the 

conductance of the resistor R1. 

4 11
2.3 10

22 k
in

G g
− −≤ + = × Ω

Ω
 giving QT' ≥ 16361 and QE ≥ 1090. The 

assumptions are largely verified. Furthermore, the very small value of G allow us 

to neglect the second term in equation (10). So, we can write: 

0.17m L

m m

G G

g ng
= =  

  

1 0( ) cosmG x V tω  tv  
LG  inG  

1 0cosV tω  



So, using Fig.3-19, we obtain x = 13.5. With this value, the output 

fundamental current is given by 1 0.6366
k

I
I

=  from Fig.3-18. So, the output 

voltage is: 

1 0 0 0
( ) cos 10 (4.7 0.6366 2 )cos 10 (5.98 )cos

t CC L
v t V R I t V k mA t V V tω ω ω= − = − Ω × × = −

 The same analysis can be repeated for any LC oscillator built around a 

nonlinear controlled current source. 

4.5 Stability factors 

 

When we design and implement an oscillator, we must make sure that its 

parameters are not going to vary with different conditions such as aging, 

temperature, etc. The most important parameter that must be fixed is the 

frequency of oscillation. In general, frequency is allocated by government 

agencies to users and in order to avoid interferences, the frequency must not 

change with time and should not be affected by external conditions. We 

distinguish two different stability factors. 

4.5.1 Direct stability factor 

The direct stability factor indicates the sensitivity to a variation of the 

frequency setting elements of the circuit. We have seen that the frequency of 

many RC oscillators is inversely proportional to the product RC.  

0

k

RC
ω =  

In this case, we can write: 

0

R C

R C

ω
ω
∆ ∆ ∆ = − + 

 
 

The above expression indicates that a relative variation of the frequency of 

the oscillator depends on the relative variation of the frequency setting elements. 

If these elements vary when external conditions such as temperature vary, we can 

appreciate the induced frequency variation and correct it. One commonly used 

technique is to select components with inverse temperature coefficients in order 

to have compensation. This technique is mostly used in LC oscillators. In this 

case, we have: 

0

1

LC
ω =  giving: 

0

1

2

L C

L C

ω
ω
∆ ∆ ∆ = − + 

 
 



We can also put the oscillator inside a temperature stabilized oven in order 

to eliminate the temperature dependence of the circuit. 

4.5.2 Indirect stability factor 

When we design an oscillator, we assume that the elements are ideal. 

However, there are many parasitic elements that intervene in a circuit. The wires 

of the different components are inductive. There exists a distributed capacitance 

between the turns of an inductor and there exist many nonlinear memory elements 

that are present in active devices. We can model these elements as "spurious" 

poles and zeroes that are introduced in the open loop transfer function. In general, 

these spurious poles and zeroes have a very large frequency (imaginary part) and 

a very negative real part. We can express the real open loop transfer function as: 

( ) ( ) ( )
Lreal L Lspur

A s A s A s=                                             (11) 

where AL(s) is the theoretical open loop transfer function,   ALspur(s) is the 

part of the transfer function due to the spurious poles and zeroes and ALreal(s)  is 

the actual open loop function. From the Barkhausen conditions, we know that the 

frequency of oscillation is given by the frequency for which the phase of the open 

loop transfer function is zero. From equation (11), we can write: 

 ( ) ( ) ( )
real spur

φ ω φ ω φ ω= +  (12) 

where [ ]( ) arg ( )L s j
A s ωφ ω

=
= . 

Consider the following phase responses: 

 

ω

φ1(ω)

φ2(ω)

 

Fig. 4- 12 Phase responses 



In Fig. 4- 12, we can observe two different theoretical phase responses that 

pass by zero at the same abscissa. According to equation(12), the actual phase 

response is going to shift up or down by a random small amount. It is evident that 

the intersection with the frequency axis is going to shift by a much smaller 

amount for the phase response 2 ( )φ ω than for 1( )φ ω . So, the spurious poles and 

zeroes will have a much smaller effect on the frequency of oscillation for 2 ( )φ ω . 

From the figure, we can observe that the main difference between the two curves 

is their slope around the frequency ω0. It is clear that the steeper the curve around 

ω0, the less sensitive the circuit is to spurious poles and zeroes. So, we can define 

an "indirect frequency stability factor" from the phase response of the theoretical 

open loop gain. We define it as the ratio of the variation of phase over the relative 

frequency change around the frequency of oscillation. 

 

0

F
S

φ
ω

ω

∆=
 ∆
 
 

 (13) 

From which we deduce: 

0

FS

ω φω ∆∆ =  

The above relation indicates that the frequency shift is small if SF is large. 

For example, a phase shift of 1° implies a frequency shift of 174.5 Hz around an 

oscillation frequency of 1 MHz if the value of the indirect stability factor has a 

value of 100.  

In many cases, the variations are very small, so we can replace the 

variations by differentials, and we can write: 

 

0

0F

d
S

d ω ω

φω
ω =

=  (14) 

Equation (14) allows the computation of SF from the expression of the open 

loop transfer function. For lumped circuits, the open loop transfer function is a 

ratio of real polynomials. This means that is has zeroes and poles that are either 

real or they occur as pairs of conjugate complex numbers. The open loop transfer 

function can be written as: 

( )( ) ( )
( )( ) ( )

1 2

0

1 2

( ) M

L

N

s z s z s z
A s A

s p s p s p

− − −
=

− − −
L

L
 

For a real A0, the phase of this transfer function is the sum of the phases 

due to the zeroes plus the sum of the phases due to the poles. 



[ ]
1 1

( ) arg ( )
M N

L zk pi

k i

A jφ ω ω φ φ
= =

= = +∑ ∑  

The phases introduced by the poles are negative because they occur at the 

denominator. 

From equation(14), the stability factor can then be written as: 

1 1

M N

F Fzk Fpk

k k

S S S
= =

= +∑ ∑  

where 

0

0
zk

Fzk

d
S

d ω ω

φω
ω =

= and 

0

0

pk

Fpk

d
S

d ω ω

φ
ω

ω =

= . 

We just have to know the contribution of a real zero (pole) and a pair of 

complex conjugate zeroes (poles) in order to be able to compute the stability 

factor for any transfer function. This computation is performed using a pole and 

zero plot. 

Indirect stability factor corresponding to a real zero (pole): 

Consider a zero 1 1z ω= − ∈ .  

 

The angle φ1 is given by: 1

1

1

( ) tan
ωφ ω
ω

−  
=  

 
 and this gives a stability factor 

equal to: 

0

0

1 1
0 2

0

1

1

Fz

d
S

d ω ω

ω
φ ωω
ω ω

ω
=

= =
 +  
 

 

Let us now consider a pair of complex conjugate zeroes: 1,2z jα β= − ± . 

The corresponding plot is: 

φ1 

ω1 

ω 



 

The total phase contribution corresponding to the pair of zeroes is given by: 

( ) 1 1

1 2
tan tan

ω β ω βφ ω φ φ
α α

− −− += + = +  

This gives an indirect stability factor of: 

( )
( )

0

2 2

0 0

0 2 2 2 2

0 0

2

4

res

F

res

d
S

d ω ω

αω ω ωφω
ω ω ω α ω=

+
= =

− +
 where 2 2 2

resω α β= + .  

resω is the resonant frequency corresponding to the pair of complex zeroes. 

It is quite usual for an oscillator to operate at the resonant frequency. At that time, 

we have 0 resω ω= and the stability factor simplifies to: 

2res
F T

S Q
ω
α

= =  

where QT is the "Que" of the pair of zeroes. If we consider poles instead, 

we have: 

2F TS Q= −  

Example: Consider the oscillator seen in section 4.2. 

( )3
( )

1
L

K
A s

RCs
=

+
. It has 3 real poles at the position:

1

RC

−
. So the indirect 

stability factor is: 

0

1

2

0

1

3

1

FS

ω
ω

ω
ω

 −  
 =
 +  
 

 along with 
0

3

RC
ω =  and 

1

1

RC
ω = . After 

replacement, we obtain: 
3 3

4
FS = . This is a quite small value. With a stability 

factor that small, it is very hard to adjust exactly the value of the frequency. 

Furthermore, any variation in the parasitic elements will have a large influence on 

the oscillation frequency. 

The LC oscillators all have a transfer function having a zero at the origin 

and a pair of complex conjugate poles. This gives a stability factor equal 

−α 

−β 

β 

φ1 

φ2 

ω 



to: 2F TS Q= − . With typical capacitors and inductors, we can achieve maximum 

values of QT of 150. So, the largest value we can expect for the indirect stability 

factor is 300. This is much better than the RC oscillator seen before. We can 

improve the stability of the oscillator by having a very small direct stability factor. 

This can be achieved by selecting capacitors with a negative temperature 

coefficient equal in absolute value to the positive temperature coefficient of the 

inductor at the ambient temperature. 

 

4.6 Crystal oscillators 

In the previous section, we have seen that we can achieve indirect stability 

factors of about 300 with LC oscillators. This corresponds to a frequency shift of 

58 Hz for a phase shift of 1° when the oscillation frequency is set to 1 MHz. 

However, this is the limit of what we can achieve with LC resonators. In order to 

achieve better results, we have to resort to mechanical resonators. A very high Q 

can be achieved with "crystal" resonators. It is possible to obtain Q's of about 10
4
 

at resonant frequencies around 1 MHz. This means that the indirect stability 

factor will be around 2×10
4
. This corresponds to a frequency shift of 0.87 Hz for 

a phase shift of 1° (less than 1 Hz).So, if we put the oscillator circuit in a 

temperature stabilized oven, we can guarantee the frequency stability to the Hertz 

value when the oscillation is around 1 MHz. In fact, many test equipments have 

such oven stabilized references.  

 

 

Fig. 4- 13 Crystal enclosures and mounting 

 



Some materials such as quartz possess the piezoelectricity property. In 

other words, a quartz crystal submitted to a mechanical strain along a given axis 

will develop an electrical polarization along another axis. This process can be 

reversed. If we apply a voltage across this axis, the crystal will have a mechanical 

deformation along the first axis. This property is used to build transducers like the 

ones used in SONAR and in echographic imaging. However, in our case, we are 

interested in mechanical resonators. A crystal cut has some elasticity and a mass. 

So, it can act as a mechanical resonator. The piezoelectricity allows us to transfer 

this mechanical resonance to an electrical one. 

 We can show that a crystal has the following equivalent electrical circuit. 
rC

Co

L

 

Fig. 4- 14 Crystal equivalent circuit 

The inductance L is the electrical equivalent to the mechanical inertia. The 

capacitance C is the electrical equivalent to the elasticity and the resistance r is 

the electrical equivalent to the mechanical loss. These losses are greatly reduced 

by enclosing the piece of crystal inside a vacuum container. The capacitor C0 on 

the other hand is due to the metallization on both faces of the crystal used to make 

the electrical connection. For example, typical values for an 8 MHz crystal are: 

L = 14 mH, C = 27 fF = 0.027 pF, r = 8 Ω and C0 = 5.6 pF. Except for C0 and r, 

the other values are impossible to realize using discrete components. 

The impedance of the circuit shown in Fig. 4- 13 is: 
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We introduce the following frequencies:  

0

1

LC
ω = : It is the resonant frequencies of the series arm composed of L, 

C and r .We call it the resonant frequency. 

0
1 0 0

0 0 0

1 1
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ω ω ω

 += = + ≈ + 
 

: It is the resonant frequency of a 

circuit composed of the parallel connection of L, C in series with C0 and a 



transformed r. We call it the antiresonant frequency. From the above definitions 

of frequencies, we can also define the "pulling range" as 1 0ω ω ω∆ = − . It is equal 

to: 

0

02

C

C
ω ω∆ ≈  

We can re-express equation (15) using the above notations:  
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It has two finite zeroes at 2 2

1,2 0z jα ω α= − ± − and three poles at 

0 0p = and at 2 2

1,2 1p α ω α= − ± − . The value of α is:  

2

r

L
α =  

Using the fact that 0

2Q

ωα = for resonant circuits (see chapter 2), we obtain:  

0L
Q

r

ω=  

For the 8 MHz crystal described before, the different values are: 

Resonant frequency: f0 = 8.186046961 MHz 

Antiresonant frequency: f1 = 8.205757451 MHz 

Giving a pulling range of ∆f = 19.710490739 kHz 

The Q corresponding to the complex zeroes or poles is: Q = 90010. With 

such high value of Q, the zeroes and the poles are practically: 

1,2 0z jα ω= − ± and 1,2 1p jα ω= − ± . The corresponding pole and zero plot is: 

 

 

We remark that the complex poles and zeroes are practically superposed 

and they have a very small real part. 

 



The magnitude of the impedance is shown below. 

 

 

The phase of the circuit is: 

 

The impedance is real at two frequencies. At the resonant frequency, the 

impedance is real and is minimum at a value of 8 Ω. At the antiresonant 

frequency, the impedance is also real and has a maximum value of 1.5 MΩ. At 

frequencies below the resonant frequency and above the antiresonant frequency, 

the crystal is capacitive. Between these two frequencies, the crystal is inductive. 

The value of the impedance at the antiresonant frequency can be computed easily 

from the pole and zero plot and is approximately given by: 
2
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When we want to use a crystal in an oscillator, we can operate it at the 

resonant frequency ω0. In this case, we say that we have a series mode oscillator. 

The impedance of the crystal at this frequency is resistive and is minimal. In some 

other cases, we can operate the oscillator at a frequency between ω0 and ω1. This 

type of oscillator is called a parallel mode oscillator. In this case, the crystal is 



inductive and we must use a capacitance CL in parallel with the crystal. In general, 

crystals are designed to be used at given particular frequency. In this case, the 

capacitance is specified. The frequency of oscillation is the parallel resonant 

frequency given by the following circuit: 
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We see that C0 is replaced by C0 in parallel with CL. This gives an 

oscillation frequency of: 

0

0

1L

L

C
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ω ω

 
≈ + + 

 

A typical parallel mode oscillator is the Pierce oscillator. Its circuit is 

shown below. 
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Fig. 4- 15 Pierce Oscillator 

Before starting the analysis of the circuit, we must remark that the FET is 

clamp biased by the pair CL and RG. The RFC is an inductor that has a very high 



value. It is used to bypass the dc current and acts as a very large impedance for 

the ac current in the drain circuit. 

Another point worth noting is that the circuit composed of the crystal and 

the two capacitors C1 and C2 must produce a phase shift of 180° at the frequency 

of oscillation to satisfy the phase requirement of the Barkhausen conditions. In 

order to produce such phase shift, the crystal must be inductive. This means that 

the frequency of oscillation is going to be inside the pulling range of the crystal, 

i.e. between the resonant and the antiresonant frequencies. So, we can replace the 

crystal by an inductance in the circuit of Fig. 4- 15. 
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In this part, we are going to perform a small signal analysis of the above 

circuit. The small signal equivalent circuit is shown below (Fig. 4- 16). 

 
L

C1 C2

 

Fig. 4- 16 Small signal equivalent circuit 

We have already studied the coupling circuit formed by the two 

capacitances C1 and C2 and the inductance L at the end of chapter 2. It is the "pi" 

circuit. Using the equivalence derived in chapter 2, we can replace the above 

circuit by: 

0 ( )mg v t−  RL RG v(t) 
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where 1 2
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The voltage at the primary is: 0
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 and at the secondary, we must 

have this voltage divided by N. So, the voltage at the secondary must be: 
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 . This voltage must be larger than v(t) at the frequency of 

oscillation in order to have closed loop poles on the right half of the s-plane. This 

implies that:  
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