Numerical Methods Control Test

Ex1 (7 points):

Find the root of $f(x) = x^2 - 3$ using Bisection method with an error of $e \approx 0.01$

Ex2 (6 points):

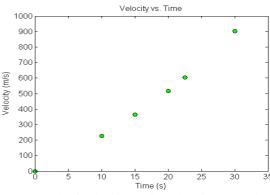
Use the formula of Newton-Raphson method (first order) to solve:

 $f(x) = x \log_{10}(x) - 2 = 0$

Ex3 (7 points):

The upward velocity of a rocket is given as a function of time in the table below.

<i>t</i> (s)	v(t) (m/s)
0	0
10	227.04
15	362.78
20	517.35
22.5	602.97
30	901.67



Graph of velocity vs. time data for the rocket

Determine the value of the velocity at t = 16 seconds.

Dr. BOUSHAKI

Solution:

Left Endpoint	Right Endpoint	Midpoint	P(Midpoint)	
1.0	2.0	1.5	-0.75	(1)
1.5	2.0	1.75	0.062	(1)
1.5	1.75	1.625	-0.359	(1)
1.625	1.75	1.6875	-0.1523	(1)
1.6875	1.75	1.7188	-0.0457	(1)
1.7188	1.75	1.7344	0.0081	(1)

Ex1:(7 points) The initial interval [1 2]

Thus, with the six iterations, the final interval, [1.7188, 1.7344], has an error $e \ge 0.01$. Therefore we take as an approximation of the root = 1.7344 (1).

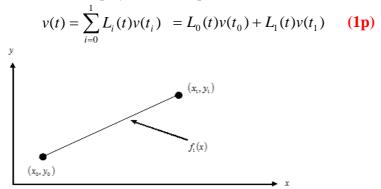
Ex2: (6 points) The formula of Newton-Raphson method is: $x_{i+1} = x_i - \frac{f(x_i)}{f(x_i)}$ (1)

We have f(3) = -0.6 and f(4) = +0.4, whence we use $x_0 = 3.5$ as a first approximation. (1) Then, we obtain the successive approximations:

 $x_0 = 3.5$; $x_1 = 3.598$; $x_2 = 3.597284$; $x_3 = 3.597285$ (1p) (1p) (1p) (1p) (1p)

Ex 3): (7 points)

For the first order polynomial interpolation (also called linear interpolation), the velocity is given by:



Since we want to find the velocity at t = 16, and the graph represents a linear regression, we need to choose the two data points closest to t = 16 are $t_0 = 15$ and $t_1 = 20$. (1p)

Then:
$$t_0 = 15, v(t_0) = 362.78$$
 and $L_0(t) = \prod_{\substack{j=0\\j\neq 0}}^{1} \frac{t - t_j}{t_0 - t_j} = \frac{t - t_1}{t_0 - t_1}$ (1p)
 $t_1 = 20, v(t_1) = 517.35$ and $L_1(t) = \prod_{\substack{j=0\\j\neq 1}}^{1} \frac{t - t_j}{t_1 - t_j} = \frac{t - t_0}{t_1 - t_0}$ (1p)
Hence $v(t) = \frac{t - t_1}{t_0 - t_1} v(t_0) + \frac{t - t_0}{t_1 - t_0} v(t_1) = \frac{t - 20}{15 - 20} (362.78) + \frac{t - 15}{20 - 15} (517.35), \quad 15 \le t \le 20$
(1p)
 $v(16) = \frac{16 - 20}{15 - 20} (362.78) + \frac{16 - 15}{20 - 15} (517.35) = 0.8(362.78) + 0.2(517.35) = 393.69 \text{ m/s}$ (1p)
 $Dr. BOUSHAKI$

<u>Numerical Methods</u> <u>First Mid-term Exam</u>

Ex.1:(10pts)

Construct the flow chart of polynomial method and its program with fortran 90.

Ex.2: (10pts)

- a) Find the solution of linear system using Gauss-Seidel method:
 - $\begin{cases} 10x_1 + x_2 + 2x_3 = 44\\ 2x_1 + 10x_2 + x_3 = 51\\ x_1 + 2x_2 + 10x_3 = 61 \end{cases}$
- b) Given the function f(x) = Tang(40x). Find f'(0.175) using backward difference representation of O(h) with h=0.075.
- c) Find the inversion of the matrix:
 - $\begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$

Numerical Methods Exam

Ex1 (5 points):

x_i	3	4.5	7	9
$f(x_i)$	2.5	1	2.5	0.5

We assume that, the first derivatives are continuous and the 2^{nd} derivative is zero at the first point.

Using the given data points in different intervals, interpolate by spline method the function of this system: $Q_i(x) = a_i x^2 + b_i x + c_i$

Ex2 (5 points):

n	0	1	1.5	2
x	-1	0	1	2
у	6	-2	-4	12

Interpolate to find $P_3(x)$.

Ex3 (5 points):

$$A = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}$$

Estimate the dominant eigenvector $v = \begin{bmatrix} x \\ y \end{bmatrix}$ by the power method.

Ex4 (5 points):

Develop a program to solve this equation with small error.

$$\mathbf{y}' = \mathbf{x} + \mathbf{y}$$
, with $\mathbf{y}(\mathbf{0}) = \mathbf{y}_0$

Dr. BOUSHAKI

Solution

Ex1:(5 points)

We take three intervals: [3, 4.5], [4.5, 7] and [7, 9]

Satisfying the three cubic spline conditions:

1. Interpolating conditions

$9a_1$	$+3b_{1}$	$+ c_1$	= 2.5
$20.25a_1$	$+4.5b_{1}$	$+ c_1$	=1.0
$20.25a_2$	$+4.5b_{2}$	$+ c_{2}$	=1.0
$49a_{2}$	$+7b_{2}$	$+ c_{2}$	= 2.5
49 <i>a</i> ₃	$+7b_{3}$	$+ c_{3}$	= 2.5
81 <i>a</i> ₃	$+9b_{3}$	$+ c_{3}$	= 0.5

2. Continuous first derivatives

$$9a_1 + b_1 = 9a_2 + b_2$$

$$14a_2 + b_2 = 14a_3 + b_3$$

3. Assume the 2nd derivatives is zero at the first point.

$$a_1 = 0$$

We can write the system of equations in matrix form as

	9	3	1	0	0	0	0	0	0	$\begin{bmatrix} a_1 \end{bmatrix}$		2.5	
	20.25	4.5	1	0	0	0	0	0	0	b_1		1	
	0	0	0	20.25	4.5	1	0	0	0	c_1		1	
	0	0	0	49	7	1	0	0	0	a_2		2.5	
	0	0	0	0	0	0	49	7	1	b_2	=	2.5	
	0	0	0	0	0	0	81	9	1	<i>c</i> ₂		0.5	
	9	1	0	- 9	-1	0	0	0	0	a_3		0	
	0	0	0	14	1	0	-14	- 1	0	b_3		0	
	1	0	0	0	0	0	0	0	0	$\lfloor c_3 \rfloor$		0	
				ons can b			yield						
a	$_{1} = 0$	b_1	= -	1 c	$r_1 = 5$.	5							
a	$_{2} = 0.64$	b_2	= -	6.76 c	$r_2 = 18$	3.46							
а	$_{3} = -1.6$	$5 b_3$	= 24	4.6 <i>c</i>								r.	2 4 5 1
					-	- x	+ 5.5				•	$x \in [.$	3,4.5]
Tł	nus the qu	adrati	c is:	Q(x)) = {().64	$x^2 - 6$	5.76 <i>x</i>	+ 1	8.46		$x \in [$	4.5,7]
				Q(x)	Į-	- 1.0	$6x^2 + 2$	24.6x	c – 9	91.3		<i>x</i> ∈ [′	7,9]

Ex2: (5 points)

a) The time "n" to record data is not with the same bandwidth (time).

b) If we take in consideration (x,y):

x	-1	0	1	2
у	6	-2	-4	12

$$P_{3}(x) = f(x) = \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{0} - x_{1})(x_{0} - x_{2})(x_{0} - x_{3})} y_{0} + \frac{(x - x_{0})(x - x_{2})(x - x_{3})}{(x_{1} - x_{0})(x_{1} - x_{2})(x_{1} - x_{3})} y_{1}$$

IGEE/Promotion M02

$$+\frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3$$

$$P_3(x) = f(x) = 2x^3 - x^2 + x - 2$$

c) We can calculate $P_2(x)$

$$P_2(x) = f(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} y_0 + \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} y_1 + \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)} y_2$$

Putting the values, we get: $P_2(x) = 2x(x-2) + (x+1)(x-2) + 2x(x+1); P_2(x) = 5x^2 - 3x - 2$

Ex 3: (5 points)

Assume the initial dominant eigenvector $x_0 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$

$$x_{1} = Ax_{0} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 2 \end{bmatrix} = 2\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

$$x_{2} = Ax_{1} = A^{2}x_{0} \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 20 \\ 8 \end{bmatrix} = \begin{bmatrix} 28 \\ 28 \end{bmatrix} = 8\begin{bmatrix} 3.5000 \\ 1.0000 \end{bmatrix}$$

$$x_{3} = Ax_{2} = A^{3}x_{0} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 88 \\ 20 \end{bmatrix} = \begin{bmatrix} 28 \\ 20 \end{bmatrix} = 20\begin{bmatrix} 4.4000 \\ 1.0000 \end{bmatrix}$$

$$x_{4} = Ax_{3} = A^{4}x_{0} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 88 \\ 20 \end{bmatrix} = \begin{bmatrix} 256 \\ 68 \end{bmatrix} = 68\begin{bmatrix} 3.7647 \\ 1.0000 \end{bmatrix}$$

$$x_{5} = Ax_{4} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 256 \\ 68 \end{bmatrix} = \begin{bmatrix} 784 \\ 188 \end{bmatrix} = 188\begin{bmatrix} 4.1702 \\ 1.0000 \end{bmatrix}$$

$$x_{6} = Ax_{5} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 784 \\ 188 \end{bmatrix} = \begin{bmatrix} 2320 \\ 596 \end{bmatrix} = 596\begin{bmatrix} 3.8926 \\ 1.0000 \end{bmatrix}$$

$$x_{7} = Ax_{6} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2320 \\ 596 \end{bmatrix} = \begin{bmatrix} 7024 \\ 1724 \end{bmatrix} = 1724\begin{bmatrix} 4.0742 \\ 1.0000 \end{bmatrix}$$

$$x_{8} = Ax_{7} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 7024 \\ 1724 \end{bmatrix} = \begin{bmatrix} 20944 \\ 15300 \end{bmatrix} = 5300\begin{bmatrix} 3.9517 \\ 1.0000 \end{bmatrix}$$

$$x_{9} = Ax_{8} = \begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 20944 \\ 5300 \end{bmatrix} = \begin{bmatrix} 63088 \\ 15644 \end{bmatrix} = 15644\begin{bmatrix} 4.0327 \\ 1.0000 \end{bmatrix}$$
We see that approximation turne about the dominant eigenvector $v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ so we can take $x = \begin{bmatrix} 4.1702 \\ 1.0000 \end{bmatrix}$ as approximate dominant eigenvector.
Ex 4: (5 points)
a) Program of Euler: :

$$y_{8:1} = y_{1} + b \{ x_{1}, y_{1} \}, \qquad p = 0.12, \dots, y_{1} = 0.12$$

b) Program of Runge Kutta first order:

$$y(x_1) \approx y_1 = y(x_0) + hy'(x_0) + \frac{h^2}{2!}y'(x_0)$$

c) Program of Runge Kutta second order:

 $K_{1} = h f(x_{n}, y_{n})$ $K_{2} = h f(x_{n} + h, y_{n} + k_{1})$ $y_{n+1} = y_{n} + \frac{1}{2}(K_{1} + K_{2})$ With: $x_{i+1} = x_{i} + h$

<u>Numerical Methods</u> First Mid-term Exam

<u>Ex1</u>

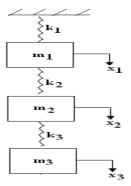
Solve the following system by Gauss elimination:

5.6 x + 3.8 y + 1.2 z = 1.4 3.l x + 7.l y - 4.7 z = 5.1 1.4 x - 3.4y + 8.3 z = 2.4

<u>Ex2</u>

Determine the root(roots) by Newton second order of the equation : $2 \cos(x) - e^x = 0$ Ex3

Analyze the free undamped vibrational characteristics of the three degrees – of– freedom system masses m_1,m_2 and m_3 connected by the three springs, with spring constants k_1,k_2 and k_3 .



 $m_1 = m_2 = m_3 = 14.59 kg$

k₁=k₂=k₃=145.9N/m(Newton /meter)

The displacements of the masses are defined by the generalized coordinates x_1, x_2 and x_3 respectively, each displacement being measured from the static-equilibrium position of the respective mass.

Find the three equations of the motion of the system

2) Set: $x_1=X_1 \sin(pt)$, $x_2=X_2 \sin(pt)$, $x_3=X_3 \sin(pt)$

Where X_1, X_2 and X_3 are the amplitudes of the motion of the respective masses, and " p" denotes the natural circular frequencies.

What is(are) the value(s) of " p" for what the system of algebraic equations has an infinite number of solutions.

<u>Ex4</u>

Derive the Newton-Raphson iteration formula: $x_{n+1} = x_n - (x_n^k - a)/k x_n^{k-1}$ for finding the k-th root of a.

Solution :

Ex1:

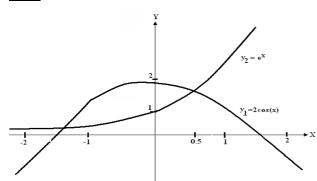
m		Augment	ed Matrix		Check	
	5.6	3-8	1.2	1.4	12-0	1
	3-1	7.1	-4.7	5.1	10-6	1
	1.4	- 3.4	8.3	2-4	8∙7	
	5.6	3-8	1.2	1-4	12-0	1
-0.554		4.99	- 5.36	4.32	3-95	Working
-0.554 -0.250		-4.35	8-00	2-05	5.70	-
						to 2D
	5.6	3.8	1.2	1-4	12-0	
		4.99	- 5.36	4-32	3.95	(rounded)
+0-872			3.33	5.82	9.14 (9.15)	

Solution by back-substitution

3	-33z	=	5.83	$\rightarrow z$	=	1.75	10
4.99y - 5	·36 × 1·75	=	4.32	$\rightarrow y$	=	2.75	Y
	$+ 1.2 \times 1.75$						

Residuals $1 \cdot 4 - (-11 \cdot 14 + 10 \cdot 45 + 2 \cdot 10) = -0.01$ $5 \cdot 1 - (-6 \cdot 17 + 19 \cdot 53 - 8 \cdot 23) = -0.03$ $2 \cdot 4 - (-2 \cdot 79 - 9 \cdot 35 + 14 \cdot 53) = 0.01$

<u>Ex2</u>



X	$\mathbf{F}(\mathbf{x})=2\cos(\mathbf{x})\mathbf{\cdot}\mathbf{e}^{\mathbf{x}}$	$F'(x)=-2sin(x)-e^{x}$	$\mathbf{F''}(\mathbf{x}) = -2\cos(\mathbf{x}) \cdot \mathbf{e}^{\mathbf{x}}$	
				$\left[\frac{f(x_n)}{f'(x_n) - \left(\frac{f''(x_n) \cdot f(x_n)}{2 \cdot f'(x_n)}\right)}\right]$
X _n =0.4	0.350	-2.270	-3.334	-0.139
$X_{n+1} = 0.539$	0.003	-2.741	-3.433	-0.001
$X_{n+2} = 0.540$	0.000			

<u>Ex3</u>: The differential equations are:

$$m_{1}x_{1} + (k_{1} + k_{2})x_{1} - k_{2}x_{2} = 0$$

$$m_{2}x_{2} - k_{2}x_{1} + (k_{2} + k_{3})x_{2} - k_{3}x_{3} = 0$$

$$m_{3}x_{3} - k_{3}x_{2} + k_{3}x_{3} = 0$$
(1)

Take:

$$x_1 = X_1 \sin(pt)$$

$$x_2 = X_2 \sin(pt)$$

$$x_3 = X_3 \sin(pt)$$
(2)

We replace (2) in (1) we get:

$$(20-p^{2})X_{1} -10X_{2} = 0$$

-10X₁+ (20-p²)X₂ -10X₃ = 0 (3)
-10X₂ + (10-p²)X₃ = 0

To obtain an infinite number of solutions the determinant of the coefficients of Xi must be equal to zero:

$$\begin{vmatrix} (20-p^2) & -10 & 0\\ -10 & (20-p^2) & -10\\ 0 & -10 & (10-p^2) \end{vmatrix} = 0$$
(4)

Expansion of this determinant results in: $p^6 - 50p^4 + 600p^2 - 1000 = 0$

Which may be written as : $(p^2)^3 - 50(p^2)^2 + 600(p^2) - 1000 = 0$

The roots are: $p_1^2 = 1.98s^{-2}$, $p_2^2 = 15.5s^{-2}$, $p_3^2 = 32.5s^{-2}$

Ex4:

$$x^{k} = a$$

$$f(x) = x^{k} - a = 0$$

$$f'(x) = kx^{k-1}$$

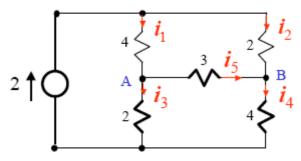
$$x_{n+1} = x_{n} - \frac{x_{n}^{k} - a}{kx_{n}^{k-1}}$$

Boumerdes university

Faculty of Engineering Sciences

Numerical Methods First Exam

<u>Ex. 1</u>



Use the Gauss elimination to determine the currents i_1 , i_2 , i_3 , i_4 and i_5

<u>Ex. 2</u>

a) Find $\sqrt{8}$ correct to within 4 decimal places.

b) Suppose we wish to construct a polynomial P₅ that interpolates a function $f \in [-1,+1]$ such as: $P_5(-1) = f(-1)$; $P_5(-1) = f'(-1)$; $P_5(0) = f(0)$;

 $P_5''(0) = f''(0); P_5(1) = f(1); P_5'(1) = f'(1)$. Write the linear system to determine the

coefficients $c_0, ..., c_5$ for the polynomial: $p_5(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5$.

<u>Ex. 3</u>

a)

Show that the equation has a root:

$x^2 + e^x - 5 = 0$

b)

We wish to see if two groups of nurses distribute their time in six different categories about the same way. That is, we wish to test H: if $p_{i1} = p_{i2}$ for i = 1, ..., 4. To carry out this test, nurses were observed at random throughout several days, each observation resulting in a mark in one of the six categories. The data are summarised below.

Category	1	2	3	4	Total
Group I	90	30	70	20	300
Group II	50	20	40	10	200

Perform the test and state your conclusions.

Mrs BOUSHAKI R.

Solution

<u>Ex.1</u>

 KCL at Node A:
 $i_1 - i_3 - i_5 = 0$ In a matrix form:

 KCL at Node B:
 $i_2 - i_4 + i_5 = 0$ In a matrix form:

 KVL to left loop:
 $4i_1 + 2i_3 = 2$ $\begin{bmatrix} 1 & 0 & -1 & 0 & -1 \\ 0 & 1 & 0 & -1 & 1 \\ 4 & 0 & 2 & 0 & 0 \\ 4 & -2 & 0 & 0 & 3 \\ 0 & 0 & 2 & -4 & -3 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ i_4 \\ i_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \\ 0 \end{bmatrix}$

 KVL to right lower loop:
 $2i_3 - 4i_4 - 3i_5 = 0$ 14

<u>Ex.2</u>

a) Here we want to find the root of the equation $f(x) = x^2 - 8 = 0$. Let's start with $x_0 = 3$. Since f'(x) = 2x then using Newton first order:

		$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$			
Iterations(n)	X_n	$f(x_n)$	$f'(x_n)$	x_{n+1}	
0	3	1	6	2.8333	
1	2.8333	0.0275	5.6666	2.8284	
2	2.8284	-0.0001	5.6568	2.8284	

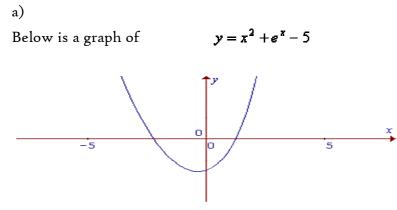
The root is x=2.8284

b) We seek the coefficients c_0, \ldots, c_5 to the polynomial

$$p_5(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4 + c_5 x^5,$$

$$\begin{aligned} \mathbf{c}_{0} + \mathbf{c}_{1}\mathbf{x}_{0} + \mathbf{c}_{2}\mathbf{x}_{0}^{2} + \mathbf{c}_{3}\mathbf{x}_{0}^{3} + \mathbf{c}_{4}\mathbf{x}_{0}^{4} + \mathbf{c}_{5}\mathbf{x}_{0}^{5} &= \mathbf{f}(\mathbf{x}_{0}) \\ \mathbf{c}_{1} + 2\mathbf{c}_{2}\mathbf{x}_{0} + 3\mathbf{c}_{3}\mathbf{x}_{0}^{2} + 4\mathbf{c}_{4}\mathbf{x}_{0}^{3} + 5\mathbf{c}_{5}\mathbf{x}_{0}^{4} &= \mathbf{f}'(\mathbf{x}_{0})) \\ \mathbf{c}_{0} + \mathbf{c}_{1}\mathbf{x}_{1} + \mathbf{c}_{2}\mathbf{x}_{1}^{2} + \mathbf{c}_{3}\mathbf{x}_{1}^{3} + \mathbf{c}_{4}\mathbf{x}_{1}^{4} + \mathbf{c}_{5}\mathbf{x}_{1}^{5} &= \mathbf{f}(\mathbf{x}_{1}) \\ & 2\mathbf{c}_{2} + 6\mathbf{c}_{3}\mathbf{x}_{0} + 12\mathbf{c}_{4}\mathbf{x}_{0}^{2} + 20\mathbf{c}_{5}\mathbf{x}_{0}^{3} &= \mathbf{f}''(\mathbf{x}_{1}) \\ \mathbf{c}_{0} + \mathbf{c}_{1}\mathbf{x}_{2} + \mathbf{c}_{2}\mathbf{x}_{2}^{2} + \mathbf{c}_{3}\mathbf{x}_{2}^{3} + \mathbf{c}_{4}\mathbf{x}_{2}^{4} + \mathbf{c}_{5}\mathbf{x}_{2}^{5} &= \mathbf{f}(\mathbf{x}_{2}) \\ \mathbf{c}_{1} + 2\mathbf{c}_{2}\mathbf{x}_{2} + 3\mathbf{c}_{3}\mathbf{x}_{2}^{2} + 4\mathbf{c}_{4}\mathbf{x}_{2}^{3} + 5\mathbf{c}_{5}\mathbf{x}_{2}^{4} &= \mathbf{f}'(\mathbf{x}_{2}). \end{aligned}$$

<u>Ex.3</u>



You can see that it crosses the axes around x = -2 and x = 1

Numerical Methods First Mid-term Exam

Ex1

a) Explain the General treatment of the Gauss elimination process

b) Explain the steps for finding the $f''(x) + \theta(h)^2$

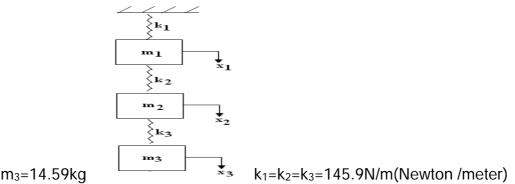
Ex2:

Proof the Newton second order :

$$x_{n+1} = x_n - \left[\frac{f(x_n)}{f'(x_n) - \left(\frac{f''(x_n) \cdot f(x_n)}{2 \cdot f'(x_n)} \right)} \right]$$

Ex3

Analyze the free undamped vibrational characteristics of the three degrees - of- freedom system masses m_1, m_2 and m_3 connected by the three springs, with spring constants k_1, k_2 and k3.



 $m_1 = m_2 = m_3 = 14.59 kg$

The displacements of the masses are defined by the generalized coordinates x_1, x_2 and x_3 respectively, each displacement being measured from the static-equilibrium position of the respective mass.

find the three equations of the motion of the system

 $x_1 = X_1 \sin(pt)$, $x_2 = X_2 \sin(pt)$, $x_3 = X_3 \sin(pt)$ 2) Set:

Where X_1, X_2 and X_3 are the amplitudes of the motion of the respective masses, and " p" denotes the natural circular frequencies. Write the linear system : A.x=b

Ex4:

a) find the k-th root of a: $x_{n+1} = x_n - (x_n^{k} - a)/k x_n^{k-1}$

b) Explain the polynomial method to solve a linear system: A.x=b

Solution :

Ex1:

<u>Ex2</u>

<u>Ex3</u>: The differential equations are:

$$m_{1}x_{1} + (k_{1} + k_{2})x_{1} - k_{2}x_{2} = 0$$

$$m_{2}x_{2} - k_{2}x_{1} + (k_{2} + k_{3})x_{2} - k_{3}x_{3} = 0$$

$$m_{3}x_{3} - k_{3}x_{2} + k_{3}x_{3} = 0$$
(1)

Take:

$$x_{1} = X_{1} \sin(pt)$$

$$x_{2} = X_{2} \sin(pt)$$

$$x_{3} = X_{3} \sin(pt)$$
(2)

We replace (2) in (1) we get:

$$(20-p^{2})X_{1} -10X_{2} = 0$$

-10X₁+ (20-p²)X₂ -10X₃ = 0 (3)
-10X₂ + (10-p²)X₃ = 0

<u>Ex4:</u>

$$x^{k} = a$$

$$f(x) = x^{k} - a = 0$$

$$f'(x) = kx^{k-1}$$

$$x_{n+1} = x_{n} - \frac{x_{n}^{k} - a}{kx_{n}^{k-1}}$$

<u>Numerical Methods</u> <u>First Exam</u>

<u>Ex1</u>

- a) What are pivot elements? Why must small pivot elements be avoided if possible
- b) What is the **convergence criterion** for the bisection method?

<u>Ex2 :</u>

Find the inverses of the following matrix, using elimination and back-substitution:

	0.20	0.24	0.12 0.24 0.49
A =	0.10	0.24	0.24
	0.05	0.30	0.49

<u>Ex3</u>

- a) Give the program that reads the number of the month and tells the number of days in that month.
- b) Correct this program

END;
IF Amount > Limit
BEGIN
WRITELN('The amount exceeds your credit limit.');
WRITELN('The maximum limit is \$',Limit)
{The semicolon is optional}
END
WRITELN('Thank you for using Pascal credit card.');
WRITELN('Press ENTER to continue');
READLN {The semicolon is optional}
END.
{}

Ex4:

a) The number 2 and its powers are very important numbers in the computer field then give the program that gives the powers of two.

b) Correct this program

b) Contect this program	
PROGRAM CaseOfWeights(INPUT,OUTPUT);	CASE CoinWeight OF
CONST	35 : Amount := Quarter;
Quarter = 25;	7 : Amount := Dime;
Dime = 10;	15 : Amount := Nickel;
Nickel = 5;	END;
VAR	WRITELN('The amount is ', Amount, ' cents.');
CoinWeight, Amount :real;	WRITELN('Press ENTER to continue');
BEGIN	READLN
WRITE('Please enter the weight: ');	END.
READLN(CoinWeight);	{ }

Mrs BOUSHAKI

Solution :

<u>Ex1:</u>

a)To avoid division by zero and avoid error caused by division by small number

b) the convergence criterion is the $|x_{N+1} - X_N| \langle \epsilon$

Ex2:

19	-34	12
-15.4	38.3	-15
7.5	-20	10

<u>Ex 3)</u>

a)

First way

CASE Month OF 1,3,5,7,8,10,12 : Days := 31; 4,6,9,11 : Days := 30; 2 : BEGIN WRITE('Enter the year:'); READLN(Year); IF YEAR MOD 4 = 0 THEN Days :=29 ELSE Days :=28 END;

Second way

PROGRAM DaysOfMonth1(INPUT,OUTPUT); VAR Days, Month, Year :INTEGER; BEGIN WRITE('Please enter the number of the month: '); READLN(Month); CASE Month OF 1,3,5,7,8,10,12 : Days := 31; 4,6,9,11 : Days := 30; BEGIŃ 2: WRITE('Enter the year:'); READLN(Year); IF YEAR MOD 4 = 0 THEN Days :=29 ELSE Days :=28 END; END; WRITELN('There are ',Days,' days in this month.'); WRITELN('Press ENTER to continue..'); READLN END. **Result of run: Run 1:** Please enter the number of the month: 2 Enter the year: 1987

There are 28 days in this month.

DGEE/Promotion EO5

Press ENTER to continue ..

Run 2: Please enter the number of the month: 2 Enter the year: 1984 There are 29 days in this month. Press ENTER to continue..

Run 3:

Please enter the number of the month: 12 There are 31 days in this month. Press ENTER to continue..

b)

~ ~ /	
Limit = 1000;	Limit = 1000;
Amount =:REAL;	Amount :REAL;
READLN('Amount');	READLN(Amount);
<=	=<
END	
	END;

Ex4:

a) PROGRAM PowerTwo(INPUT, OUTPUT); VAR Base, Power, Start, Final :INTEGER; BEGIN Base := 2; WRITE('Enter starting exponent:'); READLN(Start); WRITE('Enter ending exponent:'); READLN(Final); WRITELN: WRITELN('Number Power of two'); FOR Power := Start TO Final DO BEGIN WRITE(Power:3); WRITELN(EXP(LN(Base)*Power):20:0) END; WRITELN; WRITELN('Press ENTER to continue..'); READLN

END.

b)

CoinWeight, Amount :real;	CoinWeight : INTEGER;
	Amount: string

DGEE/Promotion EO5

<u>Numerical Methods</u> First Mid-term Exam

<u>Ex1</u>

Find a backward difference representation for $\frac{d^2 f}{dx^2}$ which is of $\theta(h^2)$.

Ex2

Consider the function $f(x) = \sin(10\pi . x)$. Find f'(0) using forward difference representation of $\theta(h)$ and $\theta(h^2)$ with h = 0.2. Compare these results with each other and with the exact analytical answer.

<u>Ex3</u>

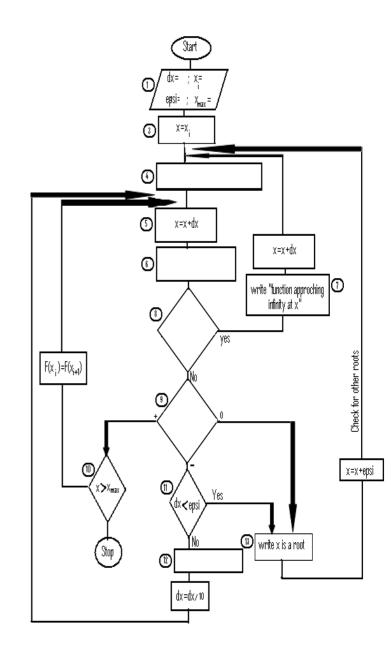
Use the Gauss-Seidel method to solve the following system of equations:

 $8x_1 + 2x_2 + 3x_3 = 30,$ $x_1 - 9x_2 + 2x_3 = 1,$ $2x_1 + 3x_2 + 6x_3 = 31.$

Using initial condition $[x_1, x_2, x_3] = [1,1,1]$, take 4 digits after decimal point. And give the result in the table.

Ex4

Complete the flow chart



Solution

<u>Ex1</u>

The Taylor series expansion for f(x) about the x=c is:

$$f_{c}(x) = f(x) + (x-c)f'(c) + \frac{(x-c)^{2}}{2!}f''(c) + \frac{(x-c)^{3}}{3!}f''(c) + \frac{(x-c)^{4}}{4!}f^{(4)}(c) + \dots\dots(1)$$
And we have: $\nabla f_{j} = f_{j} - f_{j-1}$, $\nabla^{2}f_{j} = \nabla(\nabla f_{j}) = \nabla f_{j} - \nabla f_{j-1} = f_{j} - 2f_{j-1} + f_{j-2}$
 $\nabla^{3}f_{j} = \nabla(\nabla^{2}f_{j}) = \nabla f_{j} - 2\nabla f_{j-1} + \nabla f_{j-2} = f_{j} - 3f_{j-1} + 3f_{j-2} - f_{j-3}$
So $f_{j}^{(3)} = \frac{\nabla^{3}f_{j}}{h^{3}} = \frac{f_{j} - 3f_{j-1} + 3f_{j-2} - f_{j-3}}{h^{3}} + \theta(h)\dots(2)$
Or we can write: $f^{(3)}(c) = f_{c}^{(3)} = \frac{\nabla^{3}f_{c}}{h^{3}} = \frac{f(c) - 3f(c-h) + 3f(c-2h) - f(c-3h)}{h^{3}} + \theta(h)\dots(2)$
 $(1) \Rightarrow f_{c}(x) = f(x) + (x-c)f'(c) + \frac{(x-c)^{2}}{2!}f''(c) + \frac{(x-c)^{3}}{3!}f'''(c) + \theta(h^{2})\dots(3)$

At
$$x = c - h$$
, (3) $\Rightarrow f_c(c - h) = f(c) - hf'(c) + \frac{h^2}{2}f''(c) - \frac{h^3}{6}f^{(3)}(c) + \theta(h^2)$(4)

At
$$x = c - 2h$$
, $(3) \Rightarrow f_c(c - 2h) = f(c) - 2hf'(c) + 2h^2 f''(c) - \frac{4h^3}{3}f^{(3)}(c) + \theta(h^2)$(5) then

 $(5)-2^{*}(4)$ and collecting terms yields:

$$h^{2}f^{(2)}(c) = f(c-2h) - 2f(c-h) + f(c) + h^{3}f^{(3)}(c) + \theta(h^{2}).....(6)$$

Replacing (2) in (6) and collecting terms yields: $h^2 f^{(2)}(c) = -f(c-3h) + 4f(c-2h) - 5f(c-h) + 2f(c) + \theta(h^2)$ or

$$h^2 f_j^{(2)} = -f_{j-3} + 4f_{j-2} - 5f_{j-1} + 2f_j + \theta(h^2)$$
.....

<u>Ex2</u>

Analytical solution is: $f'(x) = 10\pi Cos(10\pi . x)$, so $f'(0) = 10\pi Cos(10\pi . 0) = 10\pi \approx 31.41$

The forward representation with $\theta(h)$ is: $f'_{j} = \frac{f_{j+1} - f_{j}}{h} + \theta(h)$ or $f'(c) = \frac{f(c+h) - f(c)}{h} + \theta(h)$

With h=0.2 and c=0, then

$$f'(0) = \frac{f(0+0.2) - f(0)}{0.2} + \theta(0.2) = \frac{\sin 10\pi (0.2) - \sin 10\pi (0)}{0.2} + \theta(0.2) = 0 + \theta(0.2)$$

The forward representation with $\theta(h^2)$ is: $f'_j = \frac{-f_{j+2} + 4f_{j+1} - 3f_j}{2h} + \theta(h^2)$ or

DGEE/Promotion EO5

$$f'(c) = \frac{-f(c+2h) + 4f(c+h) - 3f(c)}{2h} + \theta(h^2)$$

With h=0.2 and c=0, then

$$f'(0) = \frac{-f(0+0.4) + 4f(0+0.2) - 3f(0)}{2(0.2)} + \theta(0.2)^2$$
$$f'(0) = \frac{-\sin 10\pi(0.4) + 4\sin 10\pi(0.2) - 3\sin 10\pi(0)}{2(0.2)} + \theta(0.2) = 0 + \theta(0.2)$$

We Remarque that in the two cases the derivative is always zero but the derivative analytically is 31.41 at x=0 so the choice of the length h=0.2 is very bad, so it would be necessary to take h smaller.

<u>Ex3</u>

Solving equations: $x_1 = \frac{30 - 2x_2 - 3x_3}{8}, x_2 = \frac{1 - x_1 - 2x_3}{-9}, x_3 = \frac{31 - 2x_1 - 3x_2}{6}$ Using initial condition

 $[x_1, x_2, x_3] = [1, 1, 1]$

Iterations	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
0	3.1250	0.4583	3.8959
1	2.1745	0.9963	3.9437
2	2.0220	0.9899	3.9977

<u>Ex4</u>

See lecture

<u>Numerical Methods</u> <u>First Exam</u>

<u>Ex1</u>

Solve this linear system by Gauss Elimination.

 $\begin{bmatrix} 3x + 5y + 7z = 101 \\ 2x + 10y + 6z = 134 \\ 1x + 2y + 3z = 40 \end{bmatrix}$

<u>Ex2 :</u>

Solve this linear system using Gauss Seidel process.

$10x_1$	-	x ₂	+	2x ₃		= 6
-x ₁	+	11x ₂	-	X3	+ 3x ₄	= 25
$2x_1$	-	X2	+	10x ₃	- X4	= -11
-		3x ₂			$+ 8x_4$	

<u>Ex3</u>

Explain the Gauss elimination process.....

Step1:
Step2:
Step3:
Step4:
Step5:
Step6:
Step7:
Step8:
Step9:

Ex4:

Write the program of Simpson's method

Solution : ⊗

<u>Ex1:</u>(5p)

(L1)	- 3x	+	5y	+	7z	=	101		3	5	7	101
(L2)	2x	+	10y	+	6z	=	134	The augmented matrix :				
(L3)	1x	+	2y	+	3z	=	40		1	2	3	40

Iteration 1:(2p)

L1=- L1
$$3x + 5y + 7z = 101$$
L1 =- L1 $3 5 7 101$ L2 =- 3 L2 - 2 L1 $20y + 4z = 200$ L2 =- 3 L2 - 2 L1 $0 20 4 200$ L3 =- 3 L3 - 1 L1 $1y + 2z = 19$ L3 =- 3 L3 - 1 L1 $0 1 2 19$

Iteration 2 : (2p)

L1 =- L1	3x + 5y + 7z = 101 L1 =- L1	3 5	5 ´	7	101
L2 =- L2	20y + 4z = 200 L2 = L2	0 2	20 4	4	200
L3 =- 20 L3 - 1 L2	36z = 180 L3 = -20 L3 - 1 L2	0 () (36	180
	-	-			-

$$(x,y,z) = (7,9,5)$$
 (1p)

<u>Ex2: (</u>5p)

$\begin{vmatrix} -x_1 + 11x_2 - x_3 + 3x_4 = 25\\ 2x_1 - x_2 + 10x_3 - x_4 = -11\\ 3x_2 - x_3 + 8x_4 = 15 \end{vmatrix}$ gives: $x_1 = \frac{10}{10} - \frac{1}{5} + \frac{1}{5}$ $x_2 = \frac{x_1}{11} + \frac{x_3}{11} - \frac{3x_4}{11} + \frac{25}{11}$ $x_3 = -\frac{x_1}{5} + \frac{x_2}{10} + \frac{x_4}{10} - \frac{11}{10}$ $x_4 = -\frac{3x_2}{8} + \frac{x_3}{8} + \frac{15}{8}$ (1p)	$2x_1 - x_2 + 10x_3 - x_4 = -11$	$3x_4 = 25$ $x_4 = -11$ gives:	$x_{1} = \frac{10}{10} + \frac{5}{5} + \frac{5}{5}$ $x_{2} = \frac{x_{1}}{11} + \frac{x_{3}}{11} - \frac{3x_{4}}{11} + \frac{25}{11}$ $x_{3} = -\frac{x_{1}}{5} + \frac{x_{2}}{10} + \frac{x_{4}}{10} - \frac{11}{10}$ $x_{4} = -\frac{3x_{2}}{8} + \frac{x_{3}}{8} + \frac{15}{8}$
---	----------------------------------	-----------------------------------	---

Suppose we choose (0, 0, 0, 0) as the initial approximation, then the first approximate solution is given by

$$x_{1} = \frac{3}{5} = 0.6$$

$$x_{2} = \frac{\left(\frac{3}{5}\right)}{11} + \frac{25}{11} = \frac{3}{55} + \frac{25}{11} = 2.3272$$

$$x_{3} = -\frac{\left(\frac{3}{5}\right)}{5} + \frac{2.3272}{10} - \frac{11}{10} = -0.9873$$

$$x_{4} = -\frac{3(2.3272)}{8} + \frac{\left(-0.9873\right)}{8} + \frac{15}{8} = 0.8789$$

DGEE/Promotion EO5

Using the approximations obtained, the iterative procedure is repeated until the desired accuracy has been reached. The following are the approximante solutions after four iterations.

x_1	x_2	x_3	x_4	
0.6	2.32727	-0.987273	0.878864	(0.5)
1.03018	2.03694	-1.01446	0.984341	(0.5)
1.00659	2.00356	-1.00253	0.998351	(0.5)
1.00086	2.0003	-1.00031	0.99985	(0.5)

The iterative procedure is stopped as soon as the differences between the $x^{(k+1)}$ and $x^{(k)}$ values are suitably small or to end the iteration when

 $S = \sum_{i=1}^{n} |x_i^{(k+1)} - x_i^{(k)}| < \varepsilon$ small number (usually chosen at first) so $S \cong 0.0127$ Finally the approximate solution is (1.00086, 2.0003, -1.00031, 0.99985) (2p) If your solution diverges you must give this remark: The gauss Seidel may diverge from the exact solution so, in order to improve the chance of convergence; the system of equations should be rearranged before applying the process.

Ex 3) (4.5p)

From the flow chart of Gauss elimination

- Step1: read data number of equations N (0.5)
- Step2: read elements of augmented matrix (0.5)

Step3: for k=1 to N-1 (0.5)

Step4: Search of the largest pivot and memorize the number of this row (0.5)

- Step5: Is row interchange required? (0.5)
- Step6: Elimination process (0.5)

Step7: Close the loop k (0.5)

Step8: Back substitution process (0.5)

Step9: Write values of the unknown (0.5)

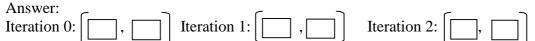
Ex4 (4.5p) (Programming of)

$S(n) = \frac{b-a}{3n} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + + 4f(x_{n-1}) + f(x_n)]$
$f(x_0) = f(a)$ and $f(x_n) = f(b)$ with $X_i = a + i.h$, $h = \frac{b-a}{n}$
%Simpson integration (for example using Matlab)
<code>a=input('the initial value of the interval a')</code> (0.5)
<code>b=input('the final value of the interval b') (0.5)</code>
n=input('the lengh') (0.5)
f=inline('sqrt(1+x^2)','x'); (0.5)
h=(b-a)/n (0.5)
% first loop (0.5)
<pre>s1=0 for i=a+h:2*h:b-h</pre>
<pre>ior 1=a+n:2*n:D-n s1=s1+f(i)</pre>
end
% second loop (0.5)
s2=0
for $j=a+2*h:2*h:b-2*h$
s2=s2+f(j) end
simp=(h/3)*(f(a)+f(b)+4*s1+2*s2) (1) <i>Mrs BOUSHAKI</i>

Numerical Methods Exam

Ex1

A) Do three iterations of the bisection method for finding a zero of the function $f(x) = x^3 - 6$. Start with the bracketing interval [1.5, 2.0].



B) Do two iterations of the Newton-Raphson method for finding a zero of the function $f(x) = x^3 - 6$. Use the initial value $x_0 = 2$.

Answer: $x_1 =$,	x ₂ =		
-----------------	--	---	------------------	--	--

<u>Ex2 :</u>

Use the formula of Newton-Raphson method (first order) to solve: $f(x) = x^3 - 0.03x^2 + 2.4 \times 10^{-6}$

<u>Ex3</u>:

Let us use Gauss Elimination Method to solve the following system:

x ₁	+	(1/2) x ₂	+	(1/3) x ₃	= 11/6
(1/2) x ₁	+	(1/3) x ₂	+	(1/4) x ₃	= 13/12
(1/3) x ₁	+	(1/4) x ₂	+	(1/5) x ₃	= 47/60

Ex4:

Consider the data set :

Х	-1	0	1	2
у	5	1	1	11

Using Lagrange, find the polynomial to interpolate all the data.

Ex5:

Write a PASCAL program to calculate the area and circumstance of circle by inputting the radius of the circle.

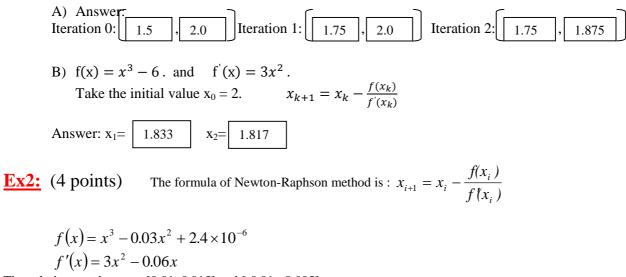
Given:

- 1. Variables names: radius, pi, area, circumstance with data type : real
- 2. pi := 3.1416
- 3. radius:=10 cm.

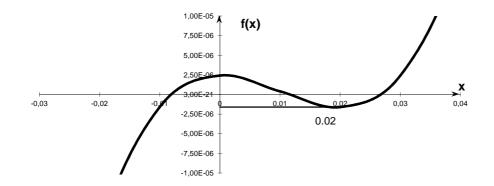
Mrs BOUSHAKI

Solution:

Ex1:(4 points)



The solutions are between [0.01, 0.015] and [-0.01, -0.005] $x_0 = 0$ or $x_0 = 0.02$, division by zero occurs.



Ex 3): (4 points)

 $m_{21} = 1/2$ and $m_{31} = 1/3$

_

 $m_{32} = 1$

\mathbf{x}_1	+	(1/2) x ₂	+	(1/3) x ₃	= 11/6
0	+	(1/12) x ₂	+	(1/12) x ₃	= 1/6
0	+	0	+	(1/180) x ₃	= 1/180

From which we compute $x_3 = 1$ and then, by back substitution, the remaining unknowns $x_2 = 1$ and $x_1 = 1$

Ex4: (4 points)

The polynomial that interpolates all the data is: $f(x) = \frac{(x-x_2)(x-x_3)(x-x_4)}{(x_1-x_2)(x_1-x_3)(x_1-x_4)} f(x_1) + \frac{(x-x_1)(x-x_3)(x-x_4)}{(x_2-x_1)(x_2-x_3)(x_2-x_4)} f(x_2)$ $+\frac{(x-x_1)(x-x_2)(x-x_4)}{(x_3-x_1)(x_3-x_2)(x_3-x_4)}f(x_3)+\frac{(x-x_1)(x-x_2)(x-x_3)}{(x_4-x_1)(x_4-x_2)(x_4-x_3)}f(x_4)$

 $f(x) = x^3 + 2x^2 - 3x + 1$ and $g(x) = \frac{1}{8}x^4 + \frac{3}{4}x^3 + \frac{15}{8}x^2 - \frac{11}{4}x + 1$ both interpolate all the data.

Ex5: (4 points) for programming

Detail of ex1

- (A) [a,b] = [1.5,2.0] is a bracketing interval of f because the function has different signs at the interval endpoints: f(a) = f(1.5) = -2.625 and f(b) = f(2.0) = 2. First iteration: the midpoint is $m_1 = \frac{1.5+2.0}{2} = 1.75$, and $f(m_1) = f(1.75) \approx -0.640 < 0$, so m_1 replaces the bracketing interval's left endpoint, and the next bracketing interval is [1.75], [2.0]. Second iteration: $m_2 = \frac{1.75+2.0}{2} = 1.875$, and $f(m_2) = f(1.875) \approx 0.591 > 0$, so the next bracketing interval is [1.75], [1.875].
- (B) The Newton-Raphson method is $x_{k+1} = x_k \frac{f(x_k)}{f'(x_k)}$. With $f(x) = x^3 6$ we have $f'(x) = 3x^2$ and so $x_{k+1} = x_k \frac{x_k^3 6}{3x_k^2}$. With the starting value $x_0 = 2$ we obtain

$$\begin{aligned} x_1 &= x_0 - \frac{f(x_0)}{f'(x_0)} = x_0 - \frac{x_0^3 - 6}{3x_0^2} = 2 - \frac{2^3 - 6}{3 \cdot 2^2} \approx \boxed{1.833} \\ x_2 &= x_1 - \frac{f(x_1)}{f'(x_1)} = x_1 - \frac{x_1^3 - 6}{3x_1^2} \approx (1.833) - \frac{(1.833)^3 - 6}{3 \cdot (1.833)^2} \approx \boxed{1.817} \end{aligned}$$

Detail of ex2

The formula of Newton-Raphson method is: $x_{i+1} = x_i - \frac{f(x_i)}{f(x_i)}$

Consequently if an iteration value, x_i is such that $f'(x_i) \cong 0$, then one can face division by zero or a near-zero number. This will give a large magnitude for the next value, x_{i+1} . An example is finding the root of the equation

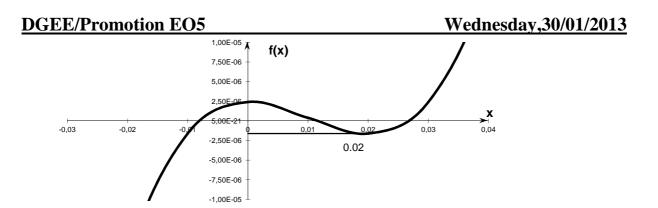
$$f(x) = x^3 - 0.03x^2 + 2.4 \times 10^{-6}$$

in which case

$$f'(x) = 3x^2 - 0.06x$$

For $x_0 = 0$ or $x_0 = 0.02$, division by zero occurs (Figure 3.14). For an initial guess close to 0.02, of $x_0 = 0.01999$, even after 9 iterations, the Newton-Raphson method is not converging.

Iteration Number	Xi	$ \mathcal{E}_a $	f(x _i)
0	0.019990		-1.6000 x 10 ⁻⁶
1	-2.6480	100.75	-18.778
2	-1.7620	50.282	-5.5638
3	-1.1714	50.422	-1.6485
4	-0.77765	50.632	-0.48842
5	-0.51518	50.946	-0.14470
6	-0.34025	51.413	-0.042862
7	-0.22369	52.107	-0.012692
8	-0.14608	53.127	-0.0037553
9	-0.094490	54.602	-0.0011091



<u>Numerical Methods</u> <u>Second Mid-term Exam</u>

<u>Ex1</u>

Consider the specific heat of water as a function of temperature at 1.0 atm. We have the following data:

Temp (C)	20	25	30	35	40	45	50
Heat(Cal /g/C)	0.99883	0.99828	0.99802	0.99795	0.99804	0.99826	0.99854

we wish to estimate the heat at x = 37. It is useful to practice some judgment here: just because there is a table available with lots of data does not necessarily imply that they should all be used to get an idea of what is happening around a specific point. What we could do, for example.

Ex2:

Prove the statements:

$$\delta^{3}f_{j} = f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} + 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}$$

Ex3:

Given that f(-2) = 46, f(-1) = 4, f(1) = 4, f(3) = 156, and f(4) = 484, use **Lagrange's interpolation formula** to estimate the value of f(0).

Ex4:

Estimate by **numerical integration**.the value of the integral $\int_{0}^{1} \frac{1}{1+x} dx$

with h=0.1 and bonded the error.

Solution :

Ex1:

We construct a cubic (n = 3) polynomial using four specific points near x = 37.

We choose $x_0=30, x_1=35, x_2=40, x_4=45$ Then we have:

$$L_0(x) = \frac{(x-35)(x-40)(x-45)}{(30-35)(30-40)(30-45)}$$
$$L_1(x) = \frac{(x-30)(x-40)(x-45)}{(35-30)(35-40)(35-45)}$$
$$L_2(x) = \frac{(x-30)(x-35)(x-45)}{(40-30)(40-35)(40-45)}$$
$$L_3(x) = \frac{(x-30)(x-35)(x-40)}{(45-30)(45-35)(45-40)}$$

Thus, the cubic polynomial we want is: $p(x) = 0.99802L_0(x) + 0.99795L_1(x) + 0.99804L_2(x) + 0.99826L_3(x)$ Evaluating the cubic interpolant at x = 37, we end

$$L_{0}(37) = \frac{(2)(-3)(-8)}{(-5)(-10)(-15)} = 0.064000$$
$$L_{1}(37) = \frac{(7)(-3)(-8)}{(5)(-5)(-10)} = 0.672000$$
$$L_{2}(37) = \frac{(7)(2)(-8)}{(10)(5)(-5)} = 0.448000$$
$$L_{3}(37) = \frac{(7)(2)(-3)}{(15)(10)(5)} = -0.056000$$

Summing , we get p(37) = 0.99797. This is comparable to the value of 0.99799 obtained by linear interpolation of the two closest neighbors, at 35 and 40.

Ex2:

$$\begin{split} \delta^{3}f_{j} &= \delta^{2}(\delta f_{j}) \\ &= \delta^{2}(f_{j+\frac{1}{2}} - f_{j-\frac{1}{2}}) \\ &= \delta(\delta f_{j+\frac{1}{2}} - \delta f_{j-\frac{1}{2}}) \\ &= \delta(f_{j+1} - 2f_{j} + f_{j-1}) \\ &= f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} - 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}. \end{split}$$

Ex3:

The Lagrange coefficients are

$$L_{0}(x) = \frac{(x+1)(x-1)(x-3)(x-4)}{(-1)(-3)(-5)(-6)} \quad \text{for } x_{0} = -2,$$

$$L_{1}(x) = \frac{(x+2)(x-1)(x-3)(x-4)}{1(-2)(-4)(-5)} \quad \text{for } x_{1} = -1,$$

$$L_{2}(x) = \frac{(x+2)(x+1)(x-3)(x-4)}{3 \times 2(-2)(-3)} \quad \text{for } x_{2} = 1,$$

$$L_{3}(x) = \frac{(x+2)(x+1)(x-1)(x-4)}{5 \times 4 \times 2(-1)} \quad \text{for } x_{3} = 3,$$

$$L_{4}(x) = \frac{(x+2)(x+1)(x-1)(x-3)}{6 \times 5 \times 3 \times 1} \quad \text{for } x_{4} = 4.$$

Thus

$$f(0) = L_0(0) \times 46 + L_1(0) \times 4 + L_2(0) \times 4 + L_3(0) \times 156 + L_4(0) \times 484 = (-92 + 36 + 40 - 468 + 484)/15 = 0$$

Ex4:

We have

$$f(x) = \frac{1}{1+x}, f''(x) = \frac{2}{(1+x)^3}, f^{(4)}(x) = \frac{24}{(1+x)^5}.$$

x	0	0.1	0.5	0.3	0.4	0-5
f(x)	1-000000	0-909091	0.833333	0.769231	0.714286	0-666667
x	0.6	0.7	0.8	0.9	1.0	
f(x)	0.625000	0.588235	0.555556	0.526316	0-500000	

By Simpson's rule,

$$\int_{0}^{1} \frac{1}{1+x} dx = \frac{0.1}{3} \left[1 + 4(0.909091 + 0.769231 + 0.666667 + 0.588235 + 0.526316) + 2(0.833333 + 0.714286 + 0.625000 + 0.555556) + 0.500000 \right]$$

= 0.6931(5).

<u>Numerical Methods</u> <u>Second Mid-term Exam</u>

<u>Ex1</u>

Use Taylor series to find the truncation errors in the formulae:

<u>Ex2</u>

Obtain an estimate of the integral $\int_{0.1}^{0.3} e^x dx$ using the trapezoidal rule with h=0.2, 0.1,

0.05

<u>Ex3</u>

Given that f(0) = 2.3913, f(1) = 2.3919, f(3) = 2.3938, and f(4) = 2.3951, use **Lagrange's** interpolation formula to estimate the value of f(2).

<u>Ex4</u>

Give an algorithm of D=A[i,j]. B[j,k] + C[i,k] with i=1:n, j=1:m and k=1:l, give the program using Pascal or Fortran.

Solution :

Ex1:

i) Expanding about
$$x = x_j$$
:
 $f(x_j + h) = f(x_j) + hf'(x_j) + \frac{1}{2}h^2f''(x_j) + ...,$
so $(f(x_j + h) - f(x_j))/h = f'(x_j) + \frac{1}{2}hf''(x_j) + ...$
and the error $\approx \frac{1}{2}hf''(x_j).$

ii) Expanding about
$$x = x_j + \frac{1}{2}h$$
:

$$f(x_j + h) = f(x_j + \frac{1}{2}h) + \frac{1}{2}hf'(x_j + \frac{1}{2}) + \frac{1}{8}h^2f''(x_j + \frac{1}{2}h) + \frac{1}{48}h^3f'''(x_j + \frac{1}{2}h) + \dots$$
and $f(x_j) = f(x_j + \frac{1}{2}h) - \frac{1}{2}hf'(x_j + \frac{1}{2}h) + \frac{1}{8}h^2f''(x_j + \frac{1}{2}h) - \frac{1}{48}h^3f'''(x_j + \frac{1}{2}h) + \dots$
so $(f(x_j + h) - f(x_j))/h = f'(x_j + \frac{1}{2}h) + \frac{1}{24}h^2f'''(x_j + \frac{1}{2}h) + \dots$
and the error $\approx \frac{1}{24}h^2f'''(x_j + \frac{1}{2}h)$.

iii) Expanding about $x = x_j$: $f(x_j + 2h) = f(x_j) + 2hf'(x_j) + 2h^2 f'''(x_j) + \frac{4}{3}h^3 f'''(x_j) + \dots$, so $(f(x_j + 2h) - 2f(x_j + h) + f(x_j))/h^2 = f''(x_j) + hf'''(x_j) + \dots$ and the error $\approx hf'''(x_j)$.

<u>Ex2</u>

If we use T(h) to denote the approximation with strip width h, we obtain

$$T(0.2) = \frac{0.2}{2} [1.10517 + 1.34986] = 0.24550$$

$$T(0.1) = \frac{0.1}{2} [1.10517 + 2(1.22140) + 1.34986] = 0.24489$$

$$T(0.05) = \frac{0.05}{2} [1.10517 + 2(1.16183 + 1.22140 + 1.28403) + 1.34986] = 0.24474$$

Ex3:

Lagrange's interpolation formula is:

$$L_0(x) = \frac{(x-1)(x-3)(x-4)}{(0-1)(0-3)(0-4)} = -(1/12)(x-1)(x-3)(x-4)$$

$$L_1(x) = \frac{(x-0)(x-3)(x-4)}{(1-0)(1-3)(1-4)} = (1/6)(x-0)(x-3)(x-4)$$

$$L_2(x) = \frac{(x-0)(x-1)(x-4)}{(3-0)(3-1)(3-4)} = -(1/6)(x-0)(x-1)(x-4)$$

$$L_3(x) = \frac{(x-0)(x-1)(x-3)}{(4-0)(4-1)(4-3)} = (1/12)(x-0)(x-1)(x-3)$$

$$F(x) = -(1/12)(x-1)(x-3)(x-4) * 2.3913 + (1/6)(x-0)(x-3)(x-4) * 2.3919$$
$$-(1/6)(x-0)(x-1)(x-4) * 2.3938 + (1/12)(x-0)(x-1)(x-3) * 2.3951$$

F(x) = -(1/12)(2-1)(2-3)(2-4) * 2.3913 + (1/6)(2-0)(2-3)(2-4) * 2.3919-(1/6)(2-0)(2-1)(2-4) * 2.3938 + (1/12)(2-0)(2-1)(2-3) * 2.3951

F(x) = -(2/12) * 2.3913 + (4/6) * 2.3919 + (4/6) * 2.3938 - (2/12) * 2.3951 = 2.3927

Boumerdes university

Sunday, 04 January 2007

Faculty of Engineering Sciences

Numerical Methods Second Exam

<u>Ex1: (</u>4p)

Estimate the value of the integral $\int_{10}^{1.3} \sqrt{x} dx$

<u>Ex2:</u> (6p)

Give the algorithm and the program of Lagrange interpolation

<u>Ex3:</u> (4p)

Prove the statements:

 $\delta^{3}f_{j} = f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} + 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}$

<u>Ex4:</u> (6p)

For each of :

- Euler's method (first order):
- Taylor series (fourth order):

state the **main disadvantage**?

<u>Mrs BOUSHAKI</u>

Solution :

<u>Ex1:</u> With b - a = 1.30 - 1.00 = 0.30, we may choose $h = 0.30, 0.15, 0.10, 0.05, \dots$ If T(h) denotes the approximation corresponding to strip width h, we get $T(0.30) = \frac{0.30}{2} (1.00000 + 1.14018) = 0.32102(7),$ $T(0.15) = \frac{0.15}{2} (1.00000 + 1.14018) + (0.15) (1.07238)$ = 0.16051(4) + 0.16085(7) = 0.32137(1), $T(0.10) = \frac{0.10}{2} (1.00000 + 1.14018) + (0.10) (1.04881 + 1.09545)$ = 0.10700(9) + 0.21442(6) = 0.32143(5), $T(0.05) = \frac{0.05}{2} (1.0000 + 1.14018) +$ + (0.05) (1.02470 + 1.04881 + 1.07238 + 1.09545 + 1.11803= 0.05350(5) + 0.26796(9) = 0.32147(4)the answer is in fact 0.32148537, so the error sequence 0.00045(8), 0.00011(4), 0.00005(0), 0.00001(1)

Ex2:

Donne on Lab

$$\frac{Ex3:}{\delta^{3}f_{j}} = \delta^{2}(\delta f_{j}^{*}) \\
= \delta^{2}(f_{j+\frac{1}{2}} - f_{j-\frac{1}{2}}) \\
= \delta(\delta f_{j+\frac{1}{2}} - \delta f_{j-\frac{1}{2}}) \\
= \delta(f_{j+1} - 2f_{j} + f_{j-1}) \\
= f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} - 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}.$$

<u>Ex4:</u>

- In **Euler's method** the step length h is very small, the truncation error will be large and the results inaccurate.
- In Taylor series the truncation error is small and the results is best approximative but the method is more complexe for computer implementation

Faculty of Engineering Sciences

Numerical Methods Second Exam

<u>Ex1: (</u>4p)

Evaluate the given code fragments for the various starting values given on the right. Use Matlab to check your answers

1. if n > 1 m = n + 2 else m = N - 2 end 2. if s <= 1 t = 2z elseif s = 10 t = 9 - z elseif s < 100 t = Sqrt(s) else t = s end	a) n = 7 b) n = 0 c) n = -7 a) s = 1 b) s = 7 c) s = 57 d) s = 300	m = ? t = ? t = ?	3. if $t \ge 24$ a) $t = 50$ h = ? $z = 3^*t + 1$ b) $t = 19$ h = ? elseif $t < 9$ c) $t = -6$ h = ? $z = t^2/3 - 2t$ d) $t = 0$ h = ? else $z = 5in(t)$ end 4. if $0 < x < 7$ a) $x = -1$ $y = ?$ $y = 4x$ b) $x = 5$ $y = ?$ elseif $7 < x < 55$ c) $x = 30$ $y = ?$ $y = -10x$ d) $x = 56$ $y = ?$ else $y = 333$ end

<u>Ex2:</u> (6p)

Give the program of Lagrange interpolation

<u>Ex3:</u> (4p)

Write the program to finding the $\sqrt{8}$ using Newton first order

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

<u>Ex4:</u> (6p)

For each of :

- Euler's method (first order):
- Taylor series (fourth order):

state the main disadvantage?

<u>Mrs BOUSHAKI</u>

Solution :

<u>Ex1:</u>

<u>Ex2:</u>

Donne on Lab

- <u>Ex3:</u>
- <u>Ex4:</u>
- In Euler's method the step length *h* is very small, the truncation error will be large and the results inaccurate.
- In **Taylor series** the **truncation error** is small and the results is best approximative but the method is more complexe for computer implementation

Numerical Methods Synthesis Exam

<u>Ex1</u>

Write the Pascal program:

- 1) For finding the mathematical root of the expression $Ax^2 + Bx + C$
- 2) To describe the weather according to the following temperature classifications:
 - greater than 75 hot 50 to 75 cool 35 to 49 cold less than 35 freezing
- 3) The code that reads the number of the month and tells the number of days in that month using CASE construct :

<u>Ex2 :</u>

1. Find the inverses of the following matrix, using **elimination and back**substitution:

2. Use the bisection method to find to 3D the positive root of the equation

x - 0.2sinx - 0.5 = 0.

<u>Ex3</u>

- 1. What is the **geometrical interpretation** of the Newton-Raphson iterative procedure?
- 2. What is the **convergence criterion** for the Newton-Raphson method?

Ex4:

obtain the estimate of $\sqrt[3]{20}$ from the points (0, 0), (1,1), (8, 2), (27, 3), and (64, 4)

Mrs BOUSHAKI

Solution :

Ex1:

1) a=input('value of a') b=input('value of b') c=input('value of c') if a == 0x=-b/2*aend if $(a \sim = 0)$ del=b^2-4*a*c if del==0 x=-b/2*a elseif del>0 x1=(-b-sqrt(del))/2*ax2=(-b+sqrt(del))/2*aelse x1=(-b-sqrt(del))/2*ax2=(-b+sqrt(del))/2*aend end 2)

3)

CASE Month OF 1,3,5,7,8,10,12 : Days := 31; 4,6,9,11 : Days := 30; 2 : Days := 28; END;

<u>Ex2</u>

1)

	1.3	4.6	3.1
	5.6	5.8	7.9
	4.2	3.2	4.5
	1.3	4.6	3.1
$M_{21} = 4.30$	0	-13.98	-5.43
$M_{31}=3.23$	0	-11.658	-5.513
	1.3	4.6	3.1
	0	-13.98	-5.43
M ₃₂ =0.83	0	0	-1.006

inv =

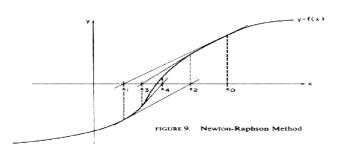
0.0460 -0.6053 1.0309 0.4481 -0.4026 0.3981 -0.3616 0.8512 -1.0230 **2**)

- In Step 6 we saw that the root lies in the interval (-0.75, -0.7). Successive bisections produce the following sequence of intervals containing the root: (-0.75, -0.725), (-0.75, -0.7375), (-0.74375, -0.7375). Thus the root is -0.74 to 2D.
- 2. Root is 0.615 to 3D.

<u>Ex3:</u>

1)

The geometrical interpretation is that each iteration provides the point at which the tangent at the original point cuts the *x*-axis. Thus the equation of the tangent at $(x_n, f(x_n))$ is : $y - f(x_0) = f'(x_0)(x - x_0)$ so that $(x_1, 0)$ corresp to $-f(x_0) = f'(x_0)(x_1 - x_0)$,



$$\Delta x = x_{n+1} - x_n$$

<u>Ex4:</u>

$$f(x) \approx \frac{x(x-8)(x-27)(x-64)}{1(-7)(-26)(-63)} \times 1 + \frac{x(x-1)(x-27)(x-64)}{8(7)(-19)(-56)} \times 2 + \frac{x(x-1)(x-8)(x-64)}{27(26)(19)(-37)} \times 3 + \frac{x(x-1)(x-8)(x-27)}{64(63)(56)(37)} \times 4$$

Numerical Methods Second Exam

Ex1

- 1. what is the advantage of Lagrange interpolation ? and give the general form of Lagrange
- 2. How are the forward, backward, and central difference obtained?
- 3. When are the **forward**, **backward**, **and central difference** likely to be of special use?
- 4. In one line compare between the method of integration that we have seen

<u>Ex2 :</u>

```
Complete the program of Lagrange interpolation
n=input('give the degree of n=')
a=input('give the value of x=')
for i=1:n+1
   x(i)=input('enter your points x(i)=')
end
for i=1:n+1
   f(i)=input('enter the values of f(i)=')
end
l=inline('(x-y)/(z-y)','x','y','z');
L=0;
for k=1:n+1
   p(k)=1;
   for j=1:n+1
       if j~=k
          p(k)......
       end
   end
   m=p(k)*f(k);
    end
L
```

<u>Ex3</u>

The values of f(x) are given below for different values of x. find the values of f(23.9)

						25		
F(x)	0.5	0.22	0.32	0.42	0.28	0.25	0.20	

Using:

$$f(x) = f(0) + \frac{x}{h} \Delta f_0 + \frac{x(x-h)}{2!h^2} \Delta^2 f_0 + \frac{x(x-h)(x-2h)}{3!h^3} \Delta^3 f_0 + \dots$$
$$f(x) = f(0) + \frac{x}{h} \nabla f_0 + \frac{x(x+h)}{2!h^2} \nabla^2 f_0 + \frac{x(x+h)(x+2h)}{3!h^3} \nabla^3 f_0 + \dots$$

<u>Ex1</u>

1) Lagrange interpolation **does not require function values at equal intervals**. And is simple to be implemented in computer.

$$P_{N}(x) = \sum_{k=0}^{N} y_{k} L_{N,k}(x) \text{ with } L_{N,k}(x) = \frac{\prod_{\substack{j=0\\j\neq k}}^{N} (x-x_{j})}{\prod_{\substack{j=0\\j\neq k}}^{N} (x_{k}-x_{j})}$$

- 2) backward differences, forward differences and central differences
- 3) $\Delta f_{\,j}=f_{\,j+1}-f_{\,j}$, $\nabla f_{\,j}=f_{\,j}-f_{\,j-1}$, $\delta f_{\,j}=f_{\,j+1}-f_{\,j-1}$
- 4) Forward differences are useful near the start of a table.
 - Central differences are useful away from the ends of a table.
 - Backward differences are useful near the end of a table.

<u>Ex2 :</u>

<u>Ex3</u>

We have :

x	Y=sin(x)	∇y	$\nabla^2 y$	$\nabla^3 y$	$ abla^4$ y
10	0.5				
15	0.22	-0.28			
20	0.42	0.2	0.48		
25	0.25	-0.17	-0.37	-0.85	
30	0.20	-0.05	0.12	0.49	1.34

Putting these values in Newton's forward interpolation:

$$f(x) = f(0) + \frac{x}{h} \nabla f_0 + \frac{x(x+h)}{2!h^2} \nabla^2 f_0 + \frac{x(x+h)(x+2h)}{3!h^3} \nabla^3 f_0 + \dots$$

$$f(x) = -0.17 + -0.37 * x + \frac{x(x+1)}{2!}(-0.85)$$

With
$$x=(x-x_0)/h=(25-23.9)/1=1.1$$

$$f(23.9) = -0.17 + -0.37 * (1.1) + \frac{1.1(1.1+1)}{2!}(-0.85) = 1.56$$

<u>Numerical Methods</u> <u>Second Mid-term Exam</u>

<u>Ex1</u>

Joe had decided to buy stocks of a particularly promising Internet company. The price per share was \$100, and Joe subsequently recorded the stock price at the end of each week. With the abscissae measured in days, the following data were acquired:

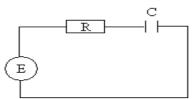
(0; 100); (7; 98); (14; 101); (21; 50); (28; 51); (35; 50).

In attempting to analyze what happened, it was desired to approximately evaluate the stock price a few days before the crash.

Pass a linear interpolant through the points with abscissae 7 and 14. Then add to this data set the value at 0 and (separately) the value at 21 to obtain two quadratic interpolants. Evaluate all three interpolants at x = 12. Which one do you think is the most accurate? Explain.

Ex2:

When a capacitor of capacitance C is being charged through a resistor R by a battery which supplies a constant voltage E with amplitude E_0 in series, the instantaneous charge q deposited on the capacitor satisfies the equation relating resistance, capacitor charge and voltage:



Give the algorithm that we need to calculate the capacitor q which is initially uncharged. (q(0)=0)

Ex3:

Calculate this integral using trapezoidal rule : $I = \int_{0}^{\pi} \sin(x) dx$ and evaluate the error.

Solution :

Ex1: (8pts) We construct : T1: (7;98);(14;101) T2: (0;100); (7;98);(14;101) T3: (7;98);(14;101);(21;50) $f_1(x) = \frac{(x-14)}{(7-14)}.98 + \frac{(x-7)}{(14-7)}.101$ $f_2(x) = \frac{(x-7)(x-14)}{(0-7)(0-14)}.100 + \frac{x(x-14)}{(7)(7-14)}.98 + \frac{x(x-7)}{(14)(14-7)}.101$ $f_3(x) = \frac{(x-14)(x-21)}{(7-14)(7-21)}.98 + \frac{(x-7)(x-21)}{(14-7)(14-21)}.101 + \frac{(x-7)(x-14)}{(21-7)(21-14)}.50$ So: $f_1(x) = 0.43x + 95.06$

$$f_2(x) = 0.05x^2 - 0.63x + 99.96$$

$$f_3(x) = -0.55x^2 + 11.99x + 41$$

For x=12 we get : $f_1(12) = 100.14$ 2 , $f_2(12) = 99.6$ 2 , $f_3(12) = 105.65$ 2 The most accurate is T₁ and T₂ 2

<u>Ex2: (6pts)</u>

 $R\frac{dq}{dt} + \frac{q}{C} = E \implies R(sq(s) - q(0)) + \frac{1}{C}q(s) = E(s) \text{ the capacitor is initially uncharged then } q(0) = 0,$ $\frac{dq}{dt} + \frac{q}{RC} = \frac{E}{R} \text{ so } q' = \frac{E}{R} - \frac{q}{RC} \qquad 4 \text{ or } q' = f(t,q)$

A)<u>Euler method</u> :(if we use this method)

$$y_{n+1} = y_n + h.f(x_n, y_n)$$
 so $q_{n+1} = q_n + h.\left(\frac{E}{R} - \frac{q_n}{RC}\right)$ 2

B)<u>Runge kutta method :</u> :(if we use this method)

$$\begin{cases} k_{1} = h.f(t_{n}, q_{n}) \\ k_{2} = h.f(t_{n} + h, q_{n} + k_{1}) \\ q_{n+1} = q_{n} + \frac{1}{2}(k_{1} + k_{2}) \end{cases}$$
so
$$\begin{cases} k_{1} = h.(\frac{E}{R} - \frac{q_{n}}{RC}) \\ k_{2} = h.(\frac{E}{R} - \frac{q_{n}}{RC} - \frac{k_{1}}{RC}) \\ q_{n+1} = q_{n} + \frac{1}{2}(k_{1} + k_{2}) \end{cases}$$

<u>Ex3:</u> (6pts)

A) If
n=3:

$$I = \frac{\pi/3}{2} \begin{bmatrix} f(\pi/3) + 2f(\pi/3) + 2f(2\pi/3 + f(\pi)) \end{bmatrix} = \frac{\pi/3}{2} [\sin(0) + 2\sin(\pi/3) + 2\sin(2\pi/3 + \sin(\pi))] = \frac{\pi/3}{2} [\sin(0) + 2\sin(\pi/3) + 2\sin(\pi/3) + 2\sin(\pi)] = \frac{\pi/3}{2} [\sin(0) + 2\sin(\pi/4) + 2f(\pi/2) + 2f(3\pi/4) + f(\pi)]$$
B) if n=4: I = $\frac{\pi/4}{2} [f(0) + 2f(\pi/4) + 2f(\pi/2) + 2f(3\pi/4) + f(\pi)]$
= $\frac{\pi/4}{2} [\sin(0) + 2\sin(\pi/4) + 2\sin(\pi/2) + 2\sin(3\pi/4) + \sin(\pi)] = \frac{\sqrt{2}}{3}\pi = \frac{1.8961}{3}$
The real integral is I = 2 so the error is E=0.1039 so 5%

<u>Numerical Methods</u> <u>Make up Exam</u>

<u>Ex1:</u>

Numerically approximate the integral $\int_{1}^{3} (3e^{-x}si(x^2)+1)dx$ by using the

trapezoidal rule with n = 1, 2, 4, 8, and 16 subintervals.

<u>Ex2:</u>

Check the inverse of this matrix A:

 $A = \begin{bmatrix} 0.20 & 0.24 & 0.12 \\ 0.10 & 0.24 & 0.24 \\ 0.05 & 0.30 & 0.49 \end{bmatrix}$

<u>Ex3:</u>

Prove the statements:

 $\delta^{3}f_{j} = f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} + 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}$

<u>Numerical Methods</u> <u>Make up Exam</u>

<u>Ex1:</u>

Use the **bisection method** to find the root of the equation : $x+\cos x = 0$.

<u>Ex2:</u>

Solve the following system by Gauss elimination:

$$x_1 + x_2 - x_3 = 0,$$

$$2x_1 - x_2 + x_3 = 6,$$

$$3x_1 + 2x_2 - 4x_3 = -4.$$

<u>Ex3:</u>

Find the inverse of the following matrix, using **elimination and back**substitution

$$\begin{bmatrix} 2 & 6 & 4 \\ 6 & 19 & 12 \\ 2 & 8 & 14 \end{bmatrix}$$

<u>Ex4:</u>

Estimate the value of the integral $\int_{1.3}^{1.3} \sqrt{x} dx$

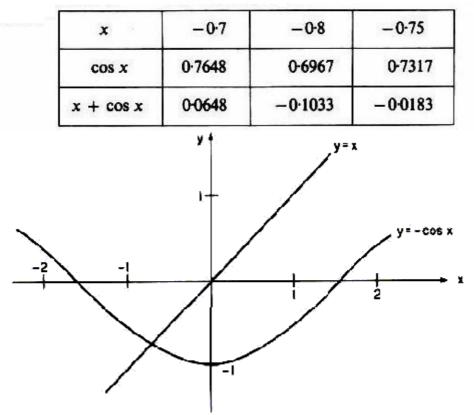
<u>Ex5:</u>

Give the algorithm and the program of Lagrange interpolation

Numerical Methods Make up (Solution)

<u>Ex1:</u>

The curves are sketched in Fig below one real root near x = -0.7. Tabulating confirms this:



Graphs of y = x and $y = -\cos x$

m		Check			
	1	1	-1	0	1
	2	-1	1	6	8
	3	2	-4	-4	-3
	1	1	-1	0	1
-2 -3	100	-3	3	6	6
-3		-1	-1	-4	-6
	1	1	-1	0	1
	0.080	-3	3	6	6
-1/3			-2	-6	-8

Solution by ba	ck-substitut	ion	Residuals
$-2x_{3}$	= - 6	$\rightarrow x_3 = 3$	0 - (2 + 1 - 3) = 0
$-3x_2 + 9$	= 6	$\rightarrow x_2 = 1$	6 - (4 - 1 + 3) = 0
$x_1 + 1 -$	3 = 0	$\rightarrow x_1 = 2$	-4 - (6 + 2 - 12) = 0

Ex3:

m	A		A I		Check	Row operation		
	2	6	4	1	0	0	13	(1)
	6	19	12	0	1	0	38	(2)
	2	8	14	0	0	1	25	(3)
	2	6	4	1	0	0	13	(4) = (1)
-3	0	1	0	-3	1	0	-1	(5) = (2) - 3(1)
-1	0	2	10	-1	0	1	12	(6) = (3) - 1(1)
	2	6	4	1	0	0	13	(7) = (1)
	0	1	0	-3	1	0	-1	(8) = (5)
-2	0	0	10	5	-2	1	14	(9) = (6) - 2(5)
				8.5	-2.6	-0.2		
Inverse matrix		-3	1	0		(Check that AA ⁻¹		
				0.5	-0.2	0.1	8	= I)

Note: The first column of A^{-1} is $\begin{pmatrix} u_3 \\ u_2 \\ u_1 \end{pmatrix}$, found by solving

$$\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_3 \\ u_2 \\ u_1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$$
 by back-substitution.

The second column is found by solving

$$\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_6 \\ u_5 \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix};$$

the third is from

$$\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_9 \\ u_8 \\ u_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Ex4:
With $b - a = 1.30 - 1.00 = 0.30$, we may choose
 $h = 0.30, 0.15, 0.10, 0.05, \dots$.
If $T(h)$ denotes the approximation corresponding to strip width h ; we get!
 $T(0.30) = \frac{0.30}{2} (1.00000 + 1.14018) = 0.32102(7),$
 $T(0.15) = \frac{0.15}{2} (1.00000 + 1.14018) + (0.15) (1.07238)$
 $= 0.16051(4) + 0.16085(7) = 0.32137(1),$
 $T(0.10) = \frac{0.10}{2} (1.00000 + 1.14018) + (0.10) (1.04881 + 1.09545)$
 $= 0.10700(9) + 0.21442(6) = 0.32143(5),$
 $T(0.05) = \frac{0.05}{2} (1.0000 + 1.14018) +$
 $+ (0.05) (1.02470 + 1.04881 + 1.07238 + 1.09545 + 1.11803)$
 $= 0.05350(5) + 0.26796(9) = 0.32147(4)$
the answer is in fact 0.32148537, so the error sequence 0.00045(8), 0.00011(4), 0.00005(0), 0.00001(1)

<u>Ex5:</u>

Numerical Methods <u>MakeUp Exam</u>

Ex1

Solve the following system by Gauss elimination:

5.6 x + 3.8 y + 1.2 z = 1.4 3.l x + 7.l y - 4.7 z = 5.1 1.4 x - 3.4y + 8.3 z = 2.4

<u>Ex2</u>

Give the algorithm and program of Gauss elimination

<u>Ex3</u>

Give the algorithm and program of Gauss Seidel

Solution :

Ex1:

m		Augment	ed Matrix	Check		
- 1	5.6	3-8	1.2	1.4	12-0	1
	3-1	7.1	-4.7	5.1	10-6	1
	1.4	- 3 · 4	8.3	2-4	8.7	
	5.6	3-8	1.2	1-4	12-0	1
-0.554		4.99	- 5.36	4.32	3-95	Working
-0.250		-4.35	8-00	2-05	5.70	-
						to 2D
	5.6	3.8	1.2	1-4	12-0	
	1.1.1.2	4.99	- 5.36	4-32	3.95	(rounded)
+0-872			3.33	5.82	9.14 (9.15)	

Solution by back-substitution

 $3 \cdot 33z = 5 \cdot 83 \rightarrow z = 1 \cdot 75 \\ 4 \cdot 99y - 5 \cdot 36 \times 1 \cdot 75 = 4 \cdot 32 \rightarrow y = 2 \cdot 75 \\ 5 \cdot 6x + 3 \cdot 8 \times 2 \cdot 75 + 1 \cdot 2 \times 1 \cdot 75 = 1 \cdot 4 \rightarrow x = -1 \cdot 99 \end{cases}$

Residuals

 $1 \cdot 4 - (-11 \cdot 14 + 10 \cdot 45 + 2 \cdot 10) = -0 \cdot 01$ $5 \cdot 1 - (-6 \cdot 17 + 19 \cdot 53 - 8 \cdot 23) = -0 \cdot 03$ $2 \cdot 4 - (-2 \cdot 79 - 9 \cdot 35 + 14 \cdot 53) = 0 \cdot 01$

<u>Numerical Methods</u> <u>Make up Exam</u>

<u>Ex1:</u>

Numerically approximate the integral $\int_{0}^{3} (3e^{-x}si(x^{2})+1)dx$ by using the

trapezoidal rule with n = 1, 2, 4, 8, and 16 subintervals.

<u>Ex2:</u>

Give the algorithm and program of Gauss elimination

<u>Ex3:</u>

Prove the statements:

 $\delta^{3}f_{j} = f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} + 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}$

<u>Numerical Methods</u> <u>Make up Exam</u>

<u>Ex1:</u>

Use the Newton-Raphson method to find to 4*S* the (positive) root of $3xe^x = 1$?

<u>Ex2:</u>

Given that f(-2) = 46, f(-1) = 4, f(1) = 4, f(3) = 156, and f(4) = 484, use **Lagrange's interpolation formula** to estimate the value of f(0).

<u>Ex3:</u>

Find the inverse of the following matrix, using **elimination and back**substitution

$$\begin{bmatrix} 2 & 6 & 4 \\ 6 & 19 & 12 \\ 2 & 8 & 14 \end{bmatrix}$$

the thi

rd is from $\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_9 \\ u_8 \\ u_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$

Make up (Solution)

Ex1: Since x > 0, the root of $f(x) \equiv \log_e 3x + x = 0$ must lie in the interval $0 < x < \frac{1}{3}$, where $\log_e 3x < 0$. If $x_0 = 0.25$ is the initial guess, $f(0.25) = \log_{e}(0.75) + 0.25$ = -0.2877 + 0.25= -0.0377.Since $f'(x)=\frac{1}{x}+1,$ f'(0.25) = 5and $x_1 = 0.25 + \frac{0.0377}{5}$ = 0.25 + 0.0075 $\cdot = 0.2575.$ Then $f(0.2575) = \log_e (0.7725) + 0.2575$ $= - 0.2581 + 0.2575 \\ = - 0.0006$ f'(0.2575) = 3.883 + 1 = 4.883,and $x_2 = 0.2575 + \frac{0.0006}{4.883}$ = 0.2575 + 0.0001= 0.2576.Since f(0.2576) = -0.0001, we conclude that the root is 0.2576. $x_{n+1} = \frac{1}{3} e^{-x_n}$ **Ex2**: The Lagrange coefficients are $L_0(x) = \frac{(x+1)(x-1)(x-3)(x-4)}{(-1)(-3)(-5)(-6)}$ for $x_0 = -2$, $L_1(x) = \frac{(x+2)(x-1)(x-3)(x-4)}{1(-2)(-4)(-5)} \quad \text{for } x_1 = -1,$ $L_{2}(x) = \frac{(x+2)(x+1)(x-3)(x-4)}{3 \times 2(-2)(-3)}$ for $L_{3}(x) = \frac{(x+2)(x+1)(x-1)(x-4)}{5 \times 4 \times 2(-1)}$ for $x_{3} = 3$, for $x_2 = 1$, $5 \times 4 \times 2(-1)$ $L_4(x) = \frac{(x+2)(x+1)(x-1)(x-3)}{6 \times 5 \times 3 \times 1} \quad \text{for } x_4 = 4.$ Thus $f(0) = L_0(0) \times 46 + L_1(0) \times 4 + L_2(0) \times 4 + L_3(0) \times 156$ + $L_4(0) \times 484$ = (-92 + 36 + 40 - 468 + 484)/15= 0 Ex<u>3:</u> T Check A Row operation 0 13 2 6 4 1 0 (1) 6 19 12 8 14 0 1 0 38 (2) 2 0 25 8 14 0 1 (3) 2 4 1 0 13 (4) = (1)6 0 (4) = (1)(5) = (2) - 3(1)(6) = (3) - 1(1)0 -3 1 0 -3 1 0 -1 - 1 -1 0 2 10 0 1 12 2 4 0 6 1 0 13 (7) = (1)(8) = (5)(9) = (6) - 2(5)0 1 0 -3 1 0 - 1 5 -2 0 0 10 -2 1 14 8.5 -2.6 -0.2 Inverse matrix -3 1 0 (Check that AA^{-1} = I) 0.5 -0.2 0-1 Note: The first column of A^{-1} is $\begin{pmatrix} u_3 \\ u_2 \\ u_1 \end{pmatrix}$, found by solving $\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_3 \\ u_1 \\ u_1 \end{bmatrix} = \begin{bmatrix} -1 \\ -3 \\ 5 \end{bmatrix}$ by back-substitution. The second column is found by solving $\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_6 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix};$

Ex1:

Given that f(-2) = 46, f(-1) = 4, f(1) = 4, f(3) = 156, and f(4) = 484, use **Lagrange's interpolation formula** to estimate the value of f(0).

Ex2:

Estimate by **numerical integration**.the value of the integral $\int_{0}^{1} \frac{1}{1+x} dx$ with h=0.1 and bonded the error.

<u>Sol 1:</u>

The Lagrange coefficients are

$$L_{0}(x) = \frac{(x+1)(x-1)(x-3)(x-4)}{(-1)(-3)(-5)(-6)} \quad \text{for } x_{0} = -2,$$

$$L_{1}(x) = \frac{(x+2)(x-1)(x-3)(x-4)}{1(-2)(-4)(-5)} \quad \text{for } x_{1} = -1,$$

$$L_{2}(x) = \frac{(x+2)(x+1)(x-3)(x-4)}{3 \times 2(-2)(-3)} \quad \text{for } x_{2} = 1,$$

$$L_{3}(x) = \frac{(x+2)(x+1)(x-1)(x-4)}{5 \times 4 \times 2(-1)} \quad \text{for } x_{3} = 3,$$

$$L_{4}(x) = \frac{(x+2)(x+1)(x-1)(x-3)}{6 \times 5 \times 3 \times 1} \quad \text{for } x_{4} = 4.$$

Thus

$$f(0) = L_0(0) \times 46 + L_1(0) \times 4 + L_2(0) \times 4 + L_3(0) \times 156 + L_4(0) \times 484 = (-92 + 36 + 40 - 468 + 484)/15 = 0$$

<u>Sol 2:</u>

We have

ve na	f(x)	$=\frac{1}{1+x},$	$f''(x) = \frac{1}{(x)}$	$\frac{2}{(1+x)^3}$, f	$^{(4)}(x) = \frac{1}{(1)}$	$\frac{24}{(x^{5})^{5}}$
x	0	0.1	0.2	0.3	0.4	0.5
f(x)	1-000000	0-909091	0.833333	0.769231	0.714286	0-666667
x	0.6	0.7	0.8	0.9	1.0	
f(x)	0.625000	0.588235	0.555556	0.526316	0-500000	

By Simpson's rule,

$$\int_{0}^{1} \frac{1}{1+x} dx = \frac{0.1}{3} \begin{bmatrix} 1 + 4(0.909091 + 0.769231 + 0.666667 \\ + 0.588235 + 0.526316) \\ + 2(0.833333 + 0.714286 + 0.625000 \\ + 0.555556) + 0.500000 \end{bmatrix}$$

= 0.6931(5).

<u>Ex3:</u> (4p)

Prove the statements:

$$\delta^{3} f_{j} = f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} + 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}$$

<u>Sol 3</u>

$$\begin{split} \delta^{3}f_{j} &= \delta^{2}(\delta f_{j}) \\ &= \delta^{2}(f_{j+\frac{1}{2}} - f_{j-\frac{1}{2}}) \\ &= \delta(\delta f_{j+\frac{1}{2}} - \delta f_{j-\frac{1}{2}}) \\ &= \delta(f_{j+1} - 2f_{j} + f_{j-1}) \\ &= f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} - 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}. \end{split}$$

<u>Ex4:</u>

Estimate the value of the integral $\int_{1.0}^{1.3} \sqrt{x} dx$

<u>Sol 4:</u>

With
$$b-a = 1.30 - 1.00 = 0.30$$
, we may choose
 $h = 0.30, 0.15, 0.10, 0.05, ...$.
If $T(h)$ denotes the approximation corresponding to strip width h, we get
 $T(0.30) = \frac{0.30}{2} (1.00000 + 1.14018) = 0.32102(7),$
 $T(0.15) = \frac{0.15}{2} (1.00000 + 1.14018) + (0.15) (1.07238)$
 $= 0.16051(4) + 0.16085(7) = 0.32137(1),$
 $T(0.10) = \frac{0.10}{2} (1.00000 + 1.14018) + (0.10) (1.04881 + 1.09545)$
 $= 0.10700(9) + 0.21442(6) = 0.32143(5),$
 $T(0.05) = \frac{0.05}{2} (1.0000 + 1.14018) +$
 $+ (0.05) (1.02470 + 1.04881 + 1.07238 + 1.09545 + 1.11803)$
 $= 0.05350(5) + 0.26796(9) = 0.32147(4)$
the answer is in fact 0.32148537, so the error sequence 0.00045(8), 0.00011(4), 0.00005(0), 0.00001(1)

<u>Ex5</u>

Write the Pascal program:

- 1) For finding the mathematical root of the expression $Ax^2 + Bx + C$
- 2) To describe the weather according to the following temperature classifications: greater than 75 hot
 50 to 75 cool
 35 to 49 cold
 less than 35 freezing

<u>Ex6:</u>

Construct the difference table for the function $f(x) = x^3$ for x = 0(1) 6. Sol 6:

x	$f(x) = x^3$	First difference	Second	Third	Fourth
1	1				
2	.8	7	12	_	
3	27	19	18	6	0
4	64	37	24	6	0
5	125	61	30	6	
6	216	91			

Ex 7

Given the following function

Γ	Х	1	2	3	4	5
	F(x)	100.000	25.000	11.111	6.250	4.000

Extrapolate to find f(5.7) using one of the :

$$f(x) = f(0) + \frac{x}{h} \Delta f_0 + \frac{x(x-h)}{2!h^2} \Delta^2 f_0 + \frac{x(x-h)(x-2h)}{3!h^3} \Delta^3 f_0 + \dots$$

$$f(x) = f(0) + \frac{x}{h} \nabla f_0 + \frac{x(x+h)}{2!h^2} \nabla^2 f_0 + \frac{x(x+h)(x+2h)}{3!h^3} \nabla^3 f_0 + \dots$$

Ex8

Joe had decided to buy stocks of a particularly promising Internet company. The price per share was \$100, and Joe subsequently recorded the stock price at the end of each week. With the abscissae measured in days, the following data were acquired:

(0; 100); (7; 98); (14; 101); (21; 50); (28; 51); (35; 50).

In attempting to analyze what happened, it was desired to approximately evaluate the stock price a few days before the crash.

(a) Pass a linear interpolant through the points with abscissae 7 and 14. Then add to this data set the value at 0 and (separately) the value at 21 to obtain two quadratic interpolants. Evaluate all three interpolants at x = 12. Which one do you think is the most accurate? Explain.

(b) Plot the two quadratic interpolants above, together with the data (without a broken line passing through the data) over the interval [0; 21]. What are your observations?

Ex9:

Give the program of polynomial method

Ex10:

Use Taylor series to find the truncation errors in the formulae:

•
$$f''(x_j) \approx [f(x_j + 2h) - 2f(x_j + h) + f(x_j)]/h^2$$

Sol 10

First we have:

Expanding about $x = x_i$:

$$f(x_{j} + h) = f(x_{j}) + hf'(x_{j}) + \frac{1}{2}h^{2}f''(x_{j}) + \dots,$$

so $(f(x_{j} + h) - f(x_{j}))/h = f'(x_{j}) + \frac{1}{2}hf''(x_{j}) + \dots$
and the error $\approx \frac{1}{2}hf''(x_{j}).$

Second we have:

Expanding about $x = x_j + \frac{1}{2}h$: $f(x_j + h) = f(x_j + \frac{1}{2}h) + \frac{1}{2}hf'(x_j + \frac{1}{2})$ $+ \frac{1}{8}h^2f''(x_j + \frac{1}{2}h) + \frac{1}{48}h^3f'''(x_j + \frac{1}{2}h) + ...$ and $f(x_j) = f(x_j + \frac{1}{2}h) - \frac{1}{2}hf'(x_j + \frac{1}{2}h) + \frac{1}{8}h^2f''(x_j + \frac{1}{2}h)$ $- \frac{1}{48}h^3f'''(x_j + \frac{1}{2}h) + ...$ so $(f(x_j + h) - f(x_j))/h = f'(x_j + \frac{1}{2}h) + \frac{1}{24}h^2f'''(x_j + \frac{1}{2}h) + ...$ and the error $\approx \frac{1}{24}h^2f'''(x_j + \frac{1}{2}h)$. Then: Expanding about $x = x_j$: $f(x_j + 2h) = f(x_j) + 2hf'(x_j) + 2h^2f'''(x_j) + \frac{4}{3}h^3f'''(x_j) + ...,$ so $(f(x_j + 2h) - 2f(x_j + h) + f(x_j))/h^2 = f''(x_j) + hf'''(x_j) + ...,$ and the error $\approx hf'''(x_j)$.

<u>Numerical Methods</u> <u>Synthesis Exam</u>

<u>Ex1:</u>

Use the **bisection method** to find the root of the equation : x+cosx = 0. correct to two decimal places (2D).

<u>Ex2:</u>

Solve the following system by Gauss elimination:

 $x_1 + x_2 - x_3 = 0,$ $2x_1 - x_2 + x_3 = 6,$ $3x_1 + 2x_2 - 4x_3 = -4.$

<u>Ex3:</u>

Construct the difference table for the function $f(x) = x^3$ for x = 0(1) 6.

<u>Ex4:</u>

Find the inverse of the following matrix, using **elimination and back**substitution

2	6	4]
6	19	12
2	8	14

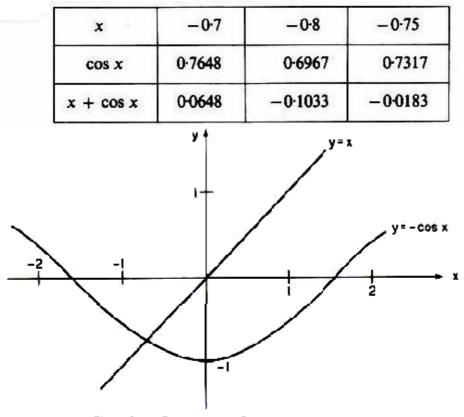
<u>Ex5:</u>

Estimate the value of the integral $\int_{1.0}^{1.3} \sqrt{x} dx$

Numerical Methods Synthesis Solution

<u>Ex1:</u>

The curves are sketched in Fig below one real root near x = -0.7. Tabulating confirms this:



Graphs of y = x and $y = -\cos x$

Ev2	

m		Augmented Matrix						
	1 1		1 -1		1			
	2	-1	1	6	8			
	3	2	-4	-4	-3			
	1	1	-1	0	1			
-2 -3	100	-3	3	6	6			
-3		-1	-1	-4	-6			
	1	1	-1	0	1			
	1/2028	-3	3	6	6			
-1/3			-2	-6	-8			

Solution by back-substitution

Residuals

$-2x_{3}$	= -	6	$\rightarrow x_3 = 3$	0 - (2 + 1 - 3) = 0
	=	6	$\rightarrow x_2 = 1$	6 - (4 - 1 + 3) = 0
$x_1 + 1 - $	3 =	0	$\rightarrow x_1 = 2$	-4 - (6 + 2 - 12) = 0

<u>Ex3:</u>

x	$f(x) = x^3$	First difference	Second	Third	Fourth
1	1	_			
2	8	7	12		
3	27	19	18	6	0
_		37		6	
4	64	61	-24	6	0
5	125	91	30		
6	216				

<u>Ex4:</u>

m		A			Ι		Check	Row operation	
	2	6	4	1	0	0	13	(1)	
	6	19	12	0	1	0	38	(2)	
	2	8	14	0	0	1	25	(3)	
	2	6	4	1	0	0	13	(4) = (1)	
-3	0	1	0	-3	1	0	-1	(5) = (2) - 3(1)	
-1	0	2	10	-1	0	1	12	(6) = (3) - 1(1)	
	2	6	4	1	0	0	13	(7) = (1)	
	0	1	0	-3	1	0	-1	(8) = (5)	
-2	0	0	10	5	-2	1	14	(9) = (6) - 2(5)	
				8.5	-2.6	-0.2			
Inverse matrix		-3	1	0		(Check that AA-			
				0.5	-0.5	0.1	8	= I)	

Note: The first column of A^{-1} is $\begin{pmatrix} u_3 \\ u_2 \\ u_1 \end{pmatrix}$, found by solving

 $\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_3 \\ u_2 \\ u_1 \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$ by back-substitution.

The second column is found by solving

$$\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_6 \\ u_5 \\ u_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix};$$

the third is from

$$\begin{bmatrix} 2 & 6 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} u_9 \\ u_8 \\ u_7 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

<u>Ex5:</u>

With b-a = 1.30 - 1.00 = 0.30, we may choose $h = 0.30, 0.15, 0.10, 0.05, \dots$

If T(h) denotes the approximation corresponding to strip width h, we get

$$T(0.30) = \frac{0.30}{2} (1.00000 + 1.14018) = 0.32102(7),$$

$$T(0.15) = \frac{0.15}{2} (1.00000 + 1.14018) + (0.15) (1.07238)$$

$$= 0.16051(4) + 0.16085(7) = 0.32137(1),$$

$$T(0.10) = \frac{0.10}{2} (1.00000 + 1.14018) + (0.10) (1.04881 + 1.09545)$$

$$= 0.10700(9) + 0.21442(6) = 0.32143(5),$$

$$T(0.05) = \frac{0.05}{2} (1.0000 + 1.14018) +$$

$$+ (0.05) (1.02470 + 1.04881 + 1.07238 + 1.09545 + 1.11803)$$

$$= 0.05350(5) + 0.26796(9) = 0.32147(4)$$

the answer is in fact 0.32148537, so the error sequence 0.00045(8), 0.00011(4), 0.00005(0), 0.00001(1)

Numerical Methods Synthesis Exam

<u>Ex1</u>

Given the following function

Х	1	2	3	4	5
F(x)	100.000	25.000	11.111	6.250	4.000

Extrapolate to find f(5.7) using one of the :

$$f(x) = f(0) + \frac{x}{h} \Delta f_0 + \frac{x(x-h)}{2!h^2} \Delta^2 f_0 + \frac{x(x-h)(x-2h)}{3!h^3} \Delta^3 f_0 + \dots$$
$$f(x) = f(0) + \frac{x}{h} \nabla f_0 + \frac{x(x+h)}{2!h^2} \nabla^2 f_0 + \frac{x(x+h)(x+2h)}{3!h^3} \nabla^3 f_0 + \dots$$

<u>Ex2</u>

Give the algorithm and the program of Lagrange interpolation using Fortran or Pascal

<u>Ex3</u>

Joe had decided to buy stocks of a particularly promising Internet company. The price per share was \$100, and Joe subsequently recorded the stock price at the end of each week. With the abscissae measured in days, the following data were acquired:

(0; 100); (7; 98); (14; 101); (21; 50); (28; 51); (35; 50).

In attempting to analyze what happened, it was desired to approximately evaluate the stock price a few days before the crash.

(a) Pass a linear interpolant through the points with abscissae 7 and 14. Then add to this data set the value at 0 and (separately) the value at 21 to obtain two quadratic interpolants. Evaluate all three interpolants at x = 12. Which one do you think is the most accurate? Explain.

(b) Plot the two quadratic interpolants above, together with the data (without a broken line passing through the data) over the interval [0; 21]. What are your observations?

Ex4

Give the algorithm and the program of Simpson integration using Fortran or Pascal

<u>Ex2</u>

Algorithm: Lagrange polynomial interpolation.

- 1. Construction: Given data $\{(x_i, y_i)\}_{i=0}^n$, compute $\rho_j := \prod_{i \neq j} (x_j x_i)$ for j = $0, 1, \ldots n$.
- 2. Evaluation: Given an evaluation point x,

 - (a) compute $\psi(x) = \prod_{i=0}^{n} (x x_i);$ (b) compute $p(x) = \psi(x) \sum_{j=0}^{n} \frac{y_j}{(x x_j)\rho_j}.$

<u>Numerical Methods</u> <u>Synthesis Exam</u>

<u>Ex1</u>

Using the finite differences, the following data represent a polynomial of what degree? What is the coefficient of the highest degree term?

Х	0	1	2	3	4	4.5	5
F(x)	1	0.5	8	35.5	95.0	96.2	198.5

<u>Ex2</u>

Find $\sqrt{7}$ using numerical methods.

<u>Ex3</u>

Given the following data and using trapezoidal integration evaluate the integral:

 $I = \int_{0}^{1.2} f(x) dx$

X	0	0.1	0.2	0.3	0.4	0.6	0.7	0.8	0.9	1.0	1.1	1.2
F(x)	93	87	68	55	42	35	39	48	53	51	39	37

<u>Ex4</u>

Give the flowchart of Gauss elimination.

DGEE/Promotion EO5

Higher Degree = 3

 $F(x) = 2x^3 + C_1 \frac{x^2}{2} + C_2 x + C_3$

Ex1 Possibilities of answers :

- 1) Problem with step so we can't solve it with finite differences.
- 2) Problem with step so eliminate 4.5 and we use finite differences.
- 3) Problem with step so use Lagrange

Ex2

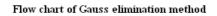
 $F(x) = x^2 - 7$ so F'(x) = 2x and starting with x₀=3, working with Newton iterations

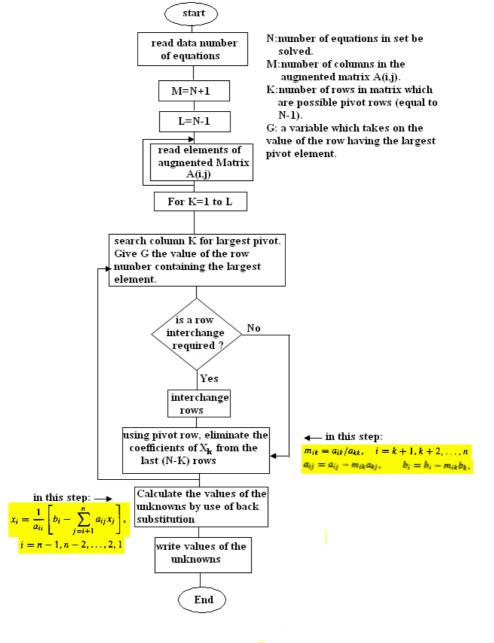
First iteration : x=2.6666 X= 2.64575 Second iteration : x=2.6458 Third iteration: x=2.64575

Ex3

- 1) Problem with step so we can't solve it with Trapezoidal integration.
- Problem with step so we decompose into two sub integrals. 2)

Ex4





Numerical Methods <u>Make up</u>

<u>Ex1</u>

(Give the answer in this sheet) program CompleteThisProgram type begin { Data reading } writeln('Enter n'); read(n); m:=n+1;l:=n-1; { Enter the augmented matrix }; for i:=1 to n do for j:=1 to m do writeln('elements of a'); readln(a[i,j]); { Main Work } for k:=1 to 1 do { Rows Interchange } G:=k;for i:=k+1 to n do

```
if (abs(a[i,k])>abs(a[G,k]))then
 if (G<>k)then
  for j:=k to m do
   begin
     .....
     .....
   2^{nd} step }
{
 for i:=k+1 to n do
   multi:=a[i,k]/a[k,k]
   for j:=k to m do
      a[i,j]:=a[i,j]-(multi*a[k,j]);
   end;
  end;
  3^{rd} step }
{
  for i:=n downto 1
  x[i]:=a[i,m];
  for j:=i+1 to n do
   •••••
  end
  x[i]:=x[i]/a[i,i]
 end
 end
```

<u>Ex2 :</u>

Using interpolation prove that:

 $y_1 = y_3 - 0.3(y_5 - y_{-3}) + 0.2(y_{-3} - y_{-5})$ with y_x are the values of y corresponding to the arguments x.

<u>Ex3</u>

Establish the iterative formula to calculate the cube root of N.

Solution of numerical Methods

Ex1

 amatrix=array[0..9,0..9] of real; bmatrix=array[0..9,0..9] of real; multimatrix=array[0..9,0..9] of real; var temp,x:real; a:amatrix; b:bmatrix; b:bmatrix; multi:multimatrix; i,j,n,m,l,k,G:integer;

2) G:=i;

- temp:=a[k,j];
 a[k,j]:=a[G,j];
 a[G,j]:=temp;
 end;
- 4) x[i]:=x[i]-(a[i,j]*x[j])

<u>Ex2 :</u>

the..point s.(x, y).are. $(-5, y_{-5}), (-3, y_{-3}), (3, y_{3})$.and. $(5, y_{5})$

$$y_{x} = \frac{(x - x_{2})(x - x_{3})(x - x_{4})}{(x_{1} - x_{2})(x_{1} - x_{3})(x_{1} - x_{4})} y_{-5} + \frac{(x - x_{1})(x - x_{3})(x - x_{4})}{(x_{2} - x_{1})(x_{2} - x_{3})(x_{2} - x_{4})} y_{-3} + \frac{(x - x_{1})(x - x_{2})(x - x_{4})}{(x_{3} - x_{1})(x_{3} - x_{2})(x_{3} - x_{4})} y_{3} + \frac{(x - x_{1})(x - x_{2})(x - x_{3})}{(x_{4} - x_{1})(x_{4} - x_{2})(x_{4} - x_{3})} y_{5}$$

Taking: $x_1=-5\,$, $x_2=-3\,$, $x_3=3\,$, $x_4=5\,$ and $x=1\,$ then

$$y_1 = -\frac{y_{-5}}{5} + \frac{y_{-3}}{2} + y_3 - \frac{3}{10}y_5$$

$$y_1 = y_3 - 0.3(y_5 - y_{-3}) + 0.2(y_{-3} - y_5)$$

<u>Ex3</u>

We have:
$$x = \sqrt[3]{N} \Rightarrow x^3 - N = 0$$

Take $f(x) = x^3 - N$ so that $f'(x) = 3x^2$

by Newton
$$\mathbf{x}_{n+1} = \mathbf{x}_n - \left[\frac{\mathbf{f}(\mathbf{x}_n)}{\mathbf{f}'(\mathbf{x}_n)}\right]$$

then
$$\mathbf{x}_{n+1} = \mathbf{x}_n - \frac{\mathbf{x}_n^3 - \mathbf{N}}{3\mathbf{x}_n^2}$$
 so $\mathbf{x}_{n+1} = \frac{\mathbf{1}}{\mathbf{3}} \left[\mathbf{2}\mathbf{x}_n + \frac{\mathbf{N}}{\mathbf{x}_n^2} \right]$

Boumerdes university

Faculty of Engineering Sciences

Numerical Methods Synthesis Exam

<u>Ex1: (</u>4p)

Estimate the value of the integral $\int_{1.0}^{1.3} \sqrt{x} dx$

<u>Ex2:</u> (6p)

Give the program of polynomial method

<u>Ex3:</u> (6p)

a) Prove the statements:

$$\delta^{3}f_{j} = f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} + 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}$$

b) Use Taylor series to find the truncation errors in the formulae:

•
$$f''(x_j) \approx [f(x_j + 2h) - 2f(x_j + h) + f(x_j)]/h^2$$

<u>Ex4:</u> (4p)

Give the program of trapezoidal integration

Solution :

<u>Ex1:</u>

With b - a = 1.30 - 1.00 = 0.30, we may choose $h = 0.30, 0.15, 0.10, 0.05, \dots$ If T(h) denotes the approximation corresponding to strip width h, we get $T(0.30) = \frac{0.30}{2} (1.00000 + 1.14018) = 0.32102(7),$ $T(0.15) = \frac{0.15}{2} (1.00000 + 1.14018) + (0.15) (1.07238)$ = 0.16051(4) + 0.16085(7) = 0.32137(1), $T(0.10) = \frac{0.10}{2} (1.00000 + 1.14018) + (0.10) (1.04881 + 1.09545)$ = 0.10700(9) + 0.21442(6) = 0.32143(5), $T(0.05) = \frac{0.05}{2} (1.0000 + 1.14018) +$ + (0.05) (1.02470 + 1.04881 + 1.07238 + 1.09545)+ 1.11803) = 0.05350(5) + 0.26796(9) = 0.32147(4)the answer is in fact 0.32148537, so the error sequence 0.00045(8), 0.00011(4), 0.00005(0), 0.00001(1)

Ex2:

Donne on Lab

$$\frac{\text{Ex3:}}{\text{a}}$$

$$\delta^{3}f_{j} = \delta^{2}(\delta f_{j})$$

$$= \delta^{2}(f_{j+\frac{1}{2}} - f_{j-\frac{1}{2}})$$

$$= \delta(\delta f_{j+\frac{1}{2}} - \delta f_{j-\frac{1}{2}})$$

$$= \delta(f_{j+1} - 2f_{j} + f_{j-1})$$

$$= f_{j+\frac{3}{2}} - 3f_{j+\frac{1}{2}} - 3f_{j-\frac{1}{2}} - f_{j-\frac{3}{2}}.$$

b)

First we have:

Expanding about $x = x_j$:

$$\begin{aligned} f(x_j + h) &= f(x_j) + hf'(x_j) + \frac{1}{2}h^2 f''(x_j) + \dots, \\ \text{so } (f(x_j + h) - f(x_j))/h &= f'(x_j) + \frac{1}{2}hf''(x_j) + \dots \\ \text{and the error } &\approx \frac{1}{2}hf''(x_j). \end{aligned}$$
Second we have:
Expanding about $x &= x_j + \frac{1}{2}h$:
 $f(x_j + h) &= f(x_j + \frac{1}{2}h) + \frac{1}{2}hf'(x_j + \frac{1}{2}) \\ &+ \frac{1}{8}h^2 f''(x_j + \frac{1}{2}h) + \frac{1}{48}h^3 f'''(x_j + \frac{1}{2}h) + \dots \\ \text{and } f(x_j) &= f(x_j + \frac{1}{2}h) - \frac{1}{2}hf'(x_j + \frac{1}{2}h) + \frac{1}{48}h^2 f'''(x_j + \frac{1}{2}h) + \dots \\ \text{so } (f(x_j + h) - f(x_j))/h &= f'(x_j + \frac{1}{2}h) + \frac{1}{24}h^2 f'''(x_j + \frac{1}{2}h) + \dots \\ \text{and the error } &\approx \frac{1}{24}h^2 f'''(x_j + \frac{1}{2}h). \end{aligned}$
Then:
Expanding about $x = x_j$:
 $f(x_j + 2h) = f(x_j) + 2hf'(x_j) + 2h^2 f'''(x_j) + \frac{4}{3}h^3 f'''(x_j) + \dots, \\ \text{so } (f(x_j + 2h) - 2f(x_j + h) + f(x_j))/h^2 &= f''(x_j) + hf'''(x_j) + \dots \\ \text{and the error } &\approx hf'''(x_j). \end{aligned}$

<u>Numerical Methods</u> <u>Synthesis Exam</u>

<u>Ex1 (10p)</u>

Solve this initial value problem numerically on the interval $0 \le x \le 2$, using Euler's method and Runge-Kutta method (two and four order). Use a constant step size of h=0.05.

$$y' = 2xy + 1$$
, $y(0) = 2$

Put the results on the table.

Х	Y^E	Y ^{RK}

Which result do you prefer and why?

<u>Ex2: (5p)</u>

Consider the system defined by a group of inputs/outputs: $X^i = 1,2,3$ and $Y^i = 2,1,2$

Estimate the output corresponding to 1.5

<u>Ex3: (</u>5p)

Compute the integral using Simpson $I = \int f(x) dx = \int_0^{(\pi)^{1/2}} x \cdot \sin(x^2) dx$ with four fixed points.

Compare this result to the exact one. How do you justify this?

 $k_{1} = hf(x_{n}, y_{n})$ $k_{2} = hf(x_{n} + h/2, y_{n} + k_{1}/2)$ $k_{3} = hf(x_{n} + h/2, y_{n} + k_{2}/2)$ $k_{4} = hf(x_{n} + h, y_{n} + k_{3})$ $k_{2} = hf(x_{n} + h, y_{n} + k_{1})$ $y_{n+1} = y_{n} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$ $y_{n+1} = y_{n} + \frac{1}{2}(k_{1} + k_{2})$ $y_{n+1} = y_{n} + hf(x_{n}, y_{n})$

Solution

<u>Ex1:</u>(10p)

Here, Y^E denotes the Euler's method estimates of y(t), Y^{RK} denotes the Runge-Kutta method estimates.

X	Y ^E	Y ^{RK} (fourth)
0	2.0000	2.0000
0.05 (0.5p)	2.0500 (0.5p)	2.0551 (0.5p)
0.10 (0.5p)	2.1102 (0.5p)	2.1207 (0.5p)
0.15 (0.5p)	2.1813 (0.5p)	2.1978 (0.5p)
0.20 (0.5p)	2.2640 (0.5p)	2.2870 (0.5p)

The best result is given by Runge-Kutta method (2p)

Because in **Euler's method** the **truncation error** is large and the results are inaccurate (we obtain the formula of Euler from Taylor series with truncation of third term and up), the Runge-Kutta is obviously superior. (**2p**)

<u>Ex2:</u>(5p)

Using Lagrange formula, the polynomials are:

 $L_{1} = \frac{1}{2}(x^{2} - 5x + 6) \quad (1\mathbf{p}), \qquad L_{2} = -(x^{2} - 4x + 3) \quad (1\mathbf{p}), \qquad L_{1} = \frac{1}{2}(x^{2} - 3x + 2) \quad (1\mathbf{p})$ So $P(x) = x^{2} - 4x + 5 \quad (1\mathbf{p})$ The output corresponding to 1.5 is $P(1.5) = 1.65 \quad (1\mathbf{p})$

The output corresponding to 1.5 is P(1.5) = 1.65 (1p)

<u>Ex 3)</u> (5p)

The integral $I = \int f(x) dx = \int_{0}^{(\pi)^{1/2}} x . sin(x^{2}) dx$

$$S(n) = \frac{b-a}{3n} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + ... + 4f(x_{n-1}) + f(x_n)]$$

1st)To apply Simpson's rule "n" must be even so we take n=4 $\Leftrightarrow f_0, f_1, f_2, f_3 \text{ and } f_4$, then $h = \frac{b-a}{n} = \frac{(\pi)^{1/2}}{4}$ (1p)

x	0	$\frac{(\pi)^{1/2}}{4}$	$\frac{2(\pi)^{1/2}}{4}$	$\frac{3(\pi)^{1/2}}{4}$	$(\pi)^{1/2}$
f(x)	0	0.00151	0.0121	0.04099	0.0971

$$S = \frac{(\pi)^{1/2}}{12} [0 + 4 * 0.00151 + 2 * 0.0121 + 4 * 0.04099 + 0.0971] = 0.043$$
(1p)

$$I = \int_0^{(\pi)^{1/2}} x . \sin(x^2) dx = -\frac{1}{2} \cos(x^2) \Big]_0^{(\pi)^{1/2}} = 1 \quad (1p)$$

Calculating the error: E = I - S = 0.9569. We conclude a big difference and to avoid this problem we must take a great number of subintervals (great number of data) or we take a small length "h". (2p)

2nd) If we take n=2
$$\Leftrightarrow f_0, f_1 \text{ and } f_2$$
, then $h = \frac{b-a}{n} = \frac{(\pi)^{1/2}}{2}$

DGEE/Promotion EO5

x	0	$\frac{(\pi)^{1/2}}{2}$	$(\pi)^{1/2}$
f(x)	0	0.0121	0.0971

$$S = \frac{(\pi)^{1/2}}{6} [0 + 4 * 0.0121 + 0.0971] = 0.0535$$

$$E = I - S = 0.9465$$

Numerical Methods Synthesis

Ex1

Use the Newton-Raphson formula to obtain a better estimate of the root of: f(x) = x-2+lnx

Ex2

Give the approximation to f(1.5) of the first and second degree obtained by the various list.

Х	F(x)
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

Ex3

Let us use Gauss Elimination Method to solve the following system:

х	-	у	+	2z	= 5
3x	+	2y	+	Z	= 10
2x	-	3у	-	2z	= -10

Ex4

Give the Lagrange polynomial of degree n for the function f(x) = cos(x) over the interval [0.0, 1.2] using equally spaced length.

[

Solution:

Ex1:(5 points)

Here $x_0 - 1.5$, $f(1.5) - -0.5 + \ln(1.5) - -0.0945$ $f'(x) = 1 + \frac{1}{x}$ \therefore $f'(1.5) = 1 + \frac{1}{1.5} = \frac{5}{3}$ Hence using the formula:

$$x_1 = 1.5 - \frac{(-0.0945)}{(1.6667)} = 1.5567$$

The Newton-Raphson formula can be used again: this time beginning with 1.5567 as our initial estimate. This time use: $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$

$$= 1.5567 - \frac{f(1.5567)}{f'(1.5567)}$$

$$= 1.5567 - \frac{\{1.5567 - 2 + \ln(1.5567)\}}{\{1 + \frac{1}{1.5567}\}}$$

$$= 1.5567 - \frac{\{-0.0007\}}{\{1.6424\}} = 1.5571$$

Ex2: (5 points)

A)

Since 1.5 is between 1.3 and 1.6, the most appropriate linear polynomial uses $x_0 = 1.3$ and $x_1 = 1.6$. The value of the interpolating polynomial at 1.5 is

$$P_1(1.5) = \frac{(1.5 - 1.6)}{(1.3 - 1.6)}(0.6200860) + \frac{(1.5 - 1.3)}{(1.6 - 1.3)}(0.4554022) = 0.5102968.$$

B)

Two polynomials of degree 2 can reasonably be used, one by letting $x_0 = 1.3$, $x_1 = 1.6$, and $x_2 = 1.9$, which gives

$$P_{2}(1.5) = \frac{(1.5 - 1.6)(1.5 - 1.9)}{(1.3 - 1.6)(1.3 - 1.9)}(0.6200860) + \frac{(1.5 - 1.3)(1.5 - 1.9)}{(1.6 - 1.3)(1.6 - 1.9)}(0.4554022) + \frac{(1.5 - 1.3)(1.5 - 1.6)}{(1.9 - 1.3)(1.9 - 1.6)}(0.2818186) = 0.5112857,$$

and the other by letting $x_0 = 1.0$, $x_1 = 1.3$, and $x_2 = 1.6$, which gives $\hat{P}_2(1.5) = 0.5124715$.

Ex 3): (5 points)

$$\begin{pmatrix} (1) & -1 & 2 & | & 5 \\ 3 & 2 & 1 & | & 10 \\ 2 & -3 & -2 & | & -10 \end{pmatrix} \begin{pmatrix} 1 & -1 & 2 & | & 5 \\ 0 & (5) & -5 & | & -5 \\ 0 & -1 & -6 & | & -20 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & | & 4 \\ 0 & 1 & -1 & | & -1 \\ 0 & 0 & (-7) & | & -21 \end{pmatrix}$$

From which we compute z = 3 and then, by back substitution, the remaining unknowns y = 2 and x = 1

Ex4: (5 points)

The polynomial that interpolates all the data is: F(x) = 1.388889(-1.2+x)(-0.6+x) - 2.2926(-1.2+x)(0.0+x) + 0.503275(-0.6+x)(0.0+x)

Faculty of Engineering Sciences

Numerical Methods Test of Lab

<u>Ex1:</u> (6p)

Write the program of polynomial methods

<u>Ex2:</u> (6p)

Write the program to finding the $\sqrt{8}$ using Newton first order

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

fragments for the various star		-
1. if n > 1	a) n = 7	m = ?
m = n + 2	b) $n = 0$	m = ?
else	c) n = -7	m = ?
m = N - 2	0,11 = 1	– .
end		
2. if s <= 1	a) s = 1	t = ?
t = 2z	b) $s = 7$	t = ?
elseif s = 10	c) s = 57	t = ?
t = 9 - z	d) $s = 300$	t = ?
elseif s < 100	u) 0 – 000	. – .
t = Sqrt(s)		
else		
t = s		
end		
3. if t >= 24	a) t = 50	h = ?
z = 3*t + 1	b) t = 19	h = ?
elseif t < 9	c) t = -6	h = ?
$z = t^2/3 - 2t$	d) $t = 0$	h = ?
else	-)	
z = Sin(t)		
end		
4. if 0 < x < 7	a) x = -1	y = ?
y = 4x	b) x = 5	y = ?
elseif $7 < x < 55$	c) $x = 30$	y = ?
y = -10x	d) x = 56	y = ?
else	,	2
y = = 333		
end		
_		

 $\underline{Ex3:}(8p)$ In each of the following questions, evaluate the given code fragments. Investigate each of the ght. Use Matlab to check your answers

Mrs BOUSHAKI R.